{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Starting Computations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ":::{admonition} Lesson Content\n", ":class: note, dropdown\n", "\n", "- Dataset\n", "- Some computation\n", "- Filtering and Masking values\n", "\n", ":::" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Context\n", "\n", "Yesterday we explored the data structures that `xarray` uses to organize data. Today we are going to use those datastructres to manipulate data!" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import xarray as xr" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Dataset\n", "\n", "The dataset of the day today is NOAA OISST. It is a sea surface temperature dataset that goes back to the 1980s.\n", "\n", "- [NOAA NCEI Data listing](https://www.ncei.noaa.gov/products/optimum-interpolation-sst)\n", "- [THREDDS Catalog](https://www.ncei.noaa.gov/thredds/catalog/OisstBase/NetCDF/V2.1/AVHRR/198210/catalog.html)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Different from yesterday, where we downloaded a copy of the dataset locally, we will access this data by URL. That means that we won't be downloading it directly. Instead of giving a filepath on our local computer, we are giving and URL from what is called a THREDDS Catalog, and xarray is able to read that." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:  (lat: 720, lon: 1440, time: 1, zlev: 1)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
       "  * lon      (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n",
       "  * time     (time) datetime64[ns] 1982-10-07T12:00:00\n",
       "  * zlev     (zlev) float32 0.0\n",
       "Data variables:\n",
       "    anom     (time, zlev, lat, lon) float32 ...\n",
       "    err      (time, zlev, lat, lon) float32 ...\n",
       "    ice      (time, zlev, lat, lon) float32 ...\n",
       "    sst      (time, zlev, lat, lon) float32 ...\n",
       "Attributes: (12/38)\n",
       "    title:                           NOAA/NCEI 1/4 Degree Daily Optimum Inter...\n",
       "    source:                          ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pa...\n",
       "    id:                              oisst-avhrr-v02r01.19821007.nc\n",
       "    naming_authority:                gov.noaa.ncei\n",
       "    summary:                         NOAAs 1/4-degree Daily Optimum Interpola...\n",
       "    cdm_data_type:                   Grid\n",
       "    ...                              ...\n",
       "    ncei_template_version:           NCEI_NetCDF_Grid_Template_v2.0\n",
       "    comment:                         Data was converted from NetCDF-3 to NetC...\n",
       "    sensor:                          Thermometer, AVHRR\n",
       "    Conventions:                     CF-1.6, ACDD-1.3\n",
       "    references:                      Reynolds, et al.(2007) Daily High-Resolu...\n",
       "    DODS_EXTRA.Unlimited_Dimension:  time
" ], "text/plain": [ "\n", "Dimensions: (lat: 720, lon: 1440, time: 1, zlev: 1)\n", "Coordinates:\n", " * lat (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n", " * lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n", " * time (time) datetime64[ns] 1982-10-07T12:00:00\n", " * zlev (zlev) float32 0.0\n", "Data variables:\n", " anom (time, zlev, lat, lon) float32 ...\n", " err (time, zlev, lat, lon) float32 ...\n", " ice (time, zlev, lat, lon) float32 ...\n", " sst (time, zlev, lat, lon) float32 ...\n", "Attributes: (12/38)\n", " title: NOAA/NCEI 1/4 Degree Daily Optimum Inter...\n", " source: ICOADS, NCEP_GTS, GSFC_ICE, NCEP_ICE, Pa...\n", " id: oisst-avhrr-v02r01.19821007.nc\n", " naming_authority: gov.noaa.ncei\n", " summary: NOAAs 1/4-degree Daily Optimum Interpola...\n", " cdm_data_type: Grid\n", " ... ...\n", " ncei_template_version: NCEI_NetCDF_Grid_Template_v2.0\n", " comment: Data was converted from NetCDF-3 to NetC...\n", " sensor: Thermometer, AVHRR\n", " Conventions: CF-1.6, ACDD-1.3\n", " references: Reynolds, et al.(2007) Daily High-Resolu...\n", " DODS_EXTRA.Unlimited_Dimension: time" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sst = xr.open_dataset(\"https://www.ncei.noaa.gov/thredds/dodsC/OisstBase/NetCDF/V2.1/AVHRR/198210/oisst-avhrr-v02r01.19821007.nc\")\n", "\n", "sst" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ":::{admonition} 📝 Check your understanding\n", ":class: tip\n", "\n", "What type of data structure is the `sst` object? What are the dimensions, how big is each one, and how many variables are there?\n", "\n", ":::" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Before we go on with our examples for the day, I'm going to do a bit of pre-processing on this data. I'm going to 1) take just the `sst` DataArray (`sst['sst']`), 2) get rid of the vertical depth dimension, `zlev`, since there is just 1 level for sst (the surface)." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "sst = sst['sst'].squeeze(dim='zlev', drop=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Some Computation\n", "\n", "### Arithmetic" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "sst_kelvin = sst + 273" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ":::{admonition} 🌀 More Info: Broadcasting during arithmetic\n", ":class: note, dropdown\n", "\n", "The reason that this works is because numpy (and therefore xarray) uses a technique called **broadcasting**. You can read more about it [here](https://xarray-contrib.github.io/xarray-tutorial/scipy-tutorial/03_computation_with_xarray.html#Broadcasting)\n", "\n", ":::" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Aggregations\n", "\n", "There are a lot (a lot) of built in **methods** that manipulate data. Some common ones are:\n", "\n", "| Function | Description |\n", "| ----------- | ----------- |\n", "| `.max()` | Maximum |\n", "| `.min()` | Minimum |\n", "| `.std()` | Standard deviation |\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'sst' ()>\n",
       "array(33.21, dtype=float32)
" ], "text/plain": [ "\n", "array(33.21, dtype=float32)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sst.max()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'sst' ()>\n",
       "array(-1.8, dtype=float32)
" ], "text/plain": [ "\n", "array(-1.8, dtype=float32)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sst.min()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In an earlier lesson we talked about functions/methods as verbs and attributes as adjectives when describing a data object. The methods listed above are examples of these for xarray DataArray objects!\n", "\n", "There are a lot of methods for DataArrays. One list (of many on the internet) is [here](https://www.pythonprogramming.in/numpy-aggregate-and-statistical-functions.html)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ":::{note}\n", "One way that programming langauges grow is when people build new tools by starting with the tools that someone else already built. This accelerates progress!\n", "\n", "You'll notice that the link above lists functions that are part of the `numpy` library. `xarray` builds on top of `numpy`, so we can use resources that others have made for numpy to help us with xarray. While not every numpy function, a lot of the numpy functions are available for xarray.\n", "\n", ":::" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ":::{admonition} 📝 Check your understanding\n", ":class: tip\n", "\n", "What is the mean value of the sst DataArray?\n", "\n", ":::" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Reading documentation\n", "\n", "To practice looking at documentation, let's look at [the docs page](https://docs.xarray.dev/en/stable/generated/xarray.DataArray.max.html) for the `xarray.DataArray.max()` method.\n", "\n", "We notice a few optional arguments - `dim` and `axis`. `dim` takes an integer as an argument and `axis` takes a string. Let's try them out." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'sst' (time: 1, lat: 720)>\n",
       "array([[            nan,             nan,             nan,\n",
       "                    nan,             nan,             nan,\n",
       "                    nan,             nan,             nan,\n",
       "                    nan,             nan,             nan,\n",
       "                    nan,             nan,             nan,\n",
       "                    nan,             nan,             nan,\n",
       "                    nan,             nan,             nan,\n",
       "                    nan,             nan,             nan,\n",
       "                    nan,             nan,             nan,\n",
       "                    nan,             nan,             nan,\n",
       "                    nan,             nan,             nan,\n",
       "                    nan,             nan,             nan,\n",
       "                    nan,             nan,             nan,\n",
       "                    nan,             nan,             nan,\n",
       "                    nan,             nan,             nan,\n",
       "                    nan, -1.30999994e+00, -1.32999992e+00,\n",
       "        -1.36000001e+00, -1.36000001e+00, -1.38000000e+00,\n",
       "        -1.15999997e+00, -1.07999992e+00, -1.10000002e+00,\n",
       "        -1.02999997e+00, -1.22000003e+00, -1.33999991e+00,\n",
       "        -1.33999991e+00, -1.36000001e+00, -1.32999992e+00,\n",
       "...\n",
       "         7.00000000e+00,  6.34999990e+00,  5.42000008e+00,\n",
       "         5.27999973e+00,  5.30999994e+00,  5.38999987e+00,\n",
       "         4.42999983e+00,  3.74000001e+00,  3.42999983e+00,\n",
       "         3.13999987e+00,  3.01999998e+00,  2.95000005e+00,\n",
       "         3.09999990e+00,  3.52999997e+00,  3.51999998e+00,\n",
       "         3.34999990e+00,  3.24000001e+00,  2.88999987e+00,\n",
       "         2.49000001e+00,  2.54999995e+00,  1.89999998e+00,\n",
       "         1.14999998e+00,  1.05999994e+00,  7.99999952e-01,\n",
       "         4.29999977e-01,  9.99999978e-03, -2.09999993e-01,\n",
       "        -3.59999985e-01, -4.79999989e-01, -5.50000012e-01,\n",
       "        -6.39999986e-01, -6.99999988e-01, -7.29999959e-01,\n",
       "        -7.59999990e-01, -7.50000000e-01, -7.19999969e-01,\n",
       "        -6.99999988e-01, -6.89999998e-01, -6.80000007e-01,\n",
       "        -6.80000007e-01, -7.29999959e-01, -7.79999971e-01,\n",
       "        -8.19999993e-01, -8.59999955e-01, -8.99999976e-01,\n",
       "        -9.39999998e-01, -9.69999969e-01, -1.00000000e+00,\n",
       "        -1.02999997e+00, -1.05999994e+00, -1.07999992e+00,\n",
       "        -1.10000002e+00, -1.12000000e+00, -1.13999999e+00,\n",
       "        -1.14999998e+00, -1.16999996e+00, -1.17999995e+00,\n",
       "        -1.17999995e+00, -1.18999994e+00, -1.18999994e+00]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
       "  * time     (time) datetime64[ns] 1982-10-07T12:00:00
" ], "text/plain": [ "\n", "array([[ nan, nan, nan,\n", " nan, nan, nan,\n", " nan, nan, nan,\n", " nan, nan, nan,\n", " nan, nan, nan,\n", " nan, nan, nan,\n", " nan, nan, nan,\n", " nan, nan, nan,\n", " nan, nan, nan,\n", " nan, nan, nan,\n", " nan, nan, nan,\n", " nan, nan, nan,\n", " nan, nan, nan,\n", " nan, nan, nan,\n", " nan, nan, nan,\n", " nan, -1.30999994e+00, -1.32999992e+00,\n", " -1.36000001e+00, -1.36000001e+00, -1.38000000e+00,\n", " -1.15999997e+00, -1.07999992e+00, -1.10000002e+00,\n", " -1.02999997e+00, -1.22000003e+00, -1.33999991e+00,\n", " -1.33999991e+00, -1.36000001e+00, -1.32999992e+00,\n", "...\n", " 7.00000000e+00, 6.34999990e+00, 5.42000008e+00,\n", " 5.27999973e+00, 5.30999994e+00, 5.38999987e+00,\n", " 4.42999983e+00, 3.74000001e+00, 3.42999983e+00,\n", " 3.13999987e+00, 3.01999998e+00, 2.95000005e+00,\n", " 3.09999990e+00, 3.52999997e+00, 3.51999998e+00,\n", " 3.34999990e+00, 3.24000001e+00, 2.88999987e+00,\n", " 2.49000001e+00, 2.54999995e+00, 1.89999998e+00,\n", " 1.14999998e+00, 1.05999994e+00, 7.99999952e-01,\n", " 4.29999977e-01, 9.99999978e-03, -2.09999993e-01,\n", " -3.59999985e-01, -4.79999989e-01, -5.50000012e-01,\n", " -6.39999986e-01, -6.99999988e-01, -7.29999959e-01,\n", " -7.59999990e-01, -7.50000000e-01, -7.19999969e-01,\n", " -6.99999988e-01, -6.89999998e-01, -6.80000007e-01,\n", " -6.80000007e-01, -7.29999959e-01, -7.79999971e-01,\n", " -8.19999993e-01, -8.59999955e-01, -8.99999976e-01,\n", " -9.39999998e-01, -9.69999969e-01, -1.00000000e+00,\n", " -1.02999997e+00, -1.05999994e+00, -1.07999992e+00,\n", " -1.10000002e+00, -1.12000000e+00, -1.13999999e+00,\n", " -1.14999998e+00, -1.16999996e+00, -1.17999995e+00,\n", " -1.17999995e+00, -1.18999994e+00, -1.18999994e+00]], dtype=float32)\n", "Coordinates:\n", " * lat (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n", " * time (time) datetime64[ns] 1982-10-07T12:00:00" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sst.max(axis=2)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'sst' (time: 1, lon: 1440)>\n",
       "array([[25.96    , 25.99    , 26.029999, ..., 26.17    , 26.099998,\n",
       "        26.029999]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lon      (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n",
       "  * time     (time) datetime64[ns] 1982-10-07T12:00:00
" ], "text/plain": [ "\n", "array([[25.96 , 25.99 , 26.029999, ..., 26.17 , 26.099998,\n", " 26.029999]], dtype=float32)\n", "Coordinates:\n", " * lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n", " * time (time) datetime64[ns] 1982-10-07T12:00:00" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sst.max(dim='lat')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see that when we use these arguments instead of smushing the all the data together and taking the maximum value, we are taking the maximum value along a particular axis of data. Whatever axis we specify in the argument disappears after we take the maximum." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ":::{note}\n", "While we won't cover it here, you can use this paradigm of applying a function on a full dataset or along an axis almost indefinetly in xarray. Even if the function you want to apply isn't a built-in function (maybe it's an algorithm you wrote yourself!), you can apply it using `DataArray.reduce()`.\n", "\n", ":::" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ":::{admonition} 📝 Check your understanding\n", ":class: tip\n", "\n", "Look at [the documentation page](https://xarray.pydata.org/en/v2022.03.0/generated/xarray.DataArray.std.html) for the `.std()` function in xarray and [the documentation page](https://numpy.org/doc/stable/reference/generated/numpy.std.html) for `.std()` in numpy.\n", "\n", "- What does the function do? (Use the numpy page)\n", "- Name 1 argument to the function and describe what it does.\n", "- What type of object does the function return?\n", "\n", ":::" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Filtering or masking values\n", "\n", "Let's start by looking at how we use booleans with data arrays. We saw previously how we could take single values and compare them with comparisons." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# mask the values with ice or err set" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "7 < 10" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x = 'hello'\n", "x == 'hola'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Can we make boolean comparisons with xarray data? Turns out we can! We can use the same comparisons (>, <, ==, >=, <=), and it compares every value in the DataArray." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "# import numpy as np\n", "\n", "# np.printoptions(threshold=20)\n", "# xr.set_options(display_expand_data=True)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'sst' (time: 1, lat: 720, lon: 1440)>\n",
       "array([[[False, False, False, ..., False, False, False],\n",
       "        [False, False, False, ..., False, False, False],\n",
       "        [False, False, False, ..., False, False, False],\n",
       "        ...,\n",
       "        [False, False, False, ..., False, False, False],\n",
       "        [False, False, False, ..., False, False, False],\n",
       "        [False, False, False, ..., False, False, False]]])\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
       "  * lon      (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n",
       "  * time     (time) datetime64[ns] 1982-10-07T12:00:00
" ], "text/plain": [ "\n", "array([[[False, False, False, ..., False, False, False],\n", " [False, False, False, ..., False, False, False],\n", " [False, False, False, ..., False, False, False],\n", " ...,\n", " [False, False, False, ..., False, False, False],\n", " [False, False, False, ..., False, False, False],\n", " [False, False, False, ..., False, False, False]]])\n", "Coordinates:\n", " * lat (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n", " * lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n", " * time (time) datetime64[ns] 1982-10-07T12:00:00" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sst > 15" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What did we get? An array of the same size where each value is a boolean True/False telling us if the condition was true.\n", "\n", "We can even use `and` and `or` like we talked about earlier in the week, but we have to change the syntax:\n", "\n", "* and -> `&`\n", "* or -> `|`" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'sst' (time: 1, lat: 720, lon: 1440)>\n",
       "array([[[False, False, False, ..., False, False, False],\n",
       "        [False, False, False, ..., False, False, False],\n",
       "        [False, False, False, ..., False, False, False],\n",
       "        ...,\n",
       "        [False, False, False, ..., False, False, False],\n",
       "        [False, False, False, ..., False, False, False],\n",
       "        [False, False, False, ..., False, False, False]]])\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
       "  * lon      (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n",
       "  * time     (time) datetime64[ns] 1982-10-07T12:00:00
" ], "text/plain": [ "\n", "array([[[False, False, False, ..., False, False, False],\n", " [False, False, False, ..., False, False, False],\n", " [False, False, False, ..., False, False, False],\n", " ...,\n", " [False, False, False, ..., False, False, False],\n", " [False, False, False, ..., False, False, False],\n", " [False, False, False, ..., False, False, False]]])\n", "Coordinates:\n", " * lat (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n", " * lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n", " * time (time) datetime64[ns] 1982-10-07T12:00:00" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "(sst > 15) & (sst < 20)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAHFCAYAAAD7ZFORAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxW0lEQVR4nO3deVRU9f8/8OewDYiCKMmiCLhLuAVJuKSW4paptFiWW2r6QzNcyyxFPy6laaSlra5lWpq2aAm55b4grplLopBC5Aa4gcy8f3/4ZWKYGZjlDjN35vk45x7l3jv3vu7cmXtf896uQgghQEREROSAXGwdABEREZG1MNEhIiIih8VEh4iIiBwWEx0iIiJyWEx0iIiIyGEx0SEiIiKHxUSHiIiIHBYTHSIiInJYTHSIiIjIYTHRIUns3bsXSUlJuHnzps6yjh07omPHjpUeU2VJTk5GfHw8wsPDoVAoyj3WLVu2oG3btvDy8oKvry969eqFU6dO6axXWFiIefPmITIyEt7e3ggICED37t2xd+9erfXS0tIwatQoNGvWDNWqVUNAQAA6d+6Mbdu2GR3/33//jcTERHTo0AHVq1eHQqHA8uXLDa7/22+/ITY2FlWqVIG/vz8GDx6M3Nxco/cHAIsWLUKTJk2gVCoRHh6O6dOn4/79+1rrdOzYEQqFwuCUk5ODpKSkctcpmUrOyalTp5CQkIDY2Fh4e3tDoVBgx44dOvFlZ2fj7bffRmxsLPz9/eHj44OoqCh89tlnUKlURh/nhQsXEB8fj+rVq6Nq1aro0qULjhw5onfdNWvWoGXLlvD09ERwcDASExNx69Ytu9wXkawIIgnMmzdPABAZGRk6y06dOiVOnTpV+UFVksaNG4tHHnlEvPLKK+Khhx4SHTp00Lvexo0bhUKhEH369BGbNm0Sq1evFo0bNxZ+fn7i/PnzWusOGDBAuLi4iClTpoitW7eK7777TkRFRQk3Nzdx4MABzXrjx48X0dHRYsGCBWLr1q3ixx9/FD169BAAxIoVK4yKf/v27cLf31907txZvPjiiwKAWLZsmd51d+zYIdzc3ETv3r1FSkqK+Oqrr0Tt2rVFZGSkuHfvnlH7mzlzplAoFGLy5Mli+/btYu7cucLDw0MMHz5ca71Tp06Jffv2aU1bt24V7u7u4rHHHhNCCJGVlaW1/PvvvxcAxGuvvaY1v+Tzt3z5chEUFCR69OghevXqJQCI7du368T4008/iZCQEDFlyhSxadMmkZKSIsaOHStcXFzEkCFDjDrO3NxcERwcLB5++GGxfv16sWnTJtGuXTtRrVo18eeff2qt+9VXXwkAYtiwYWLbtm3ik08+Eb6+vqJLly52ty8iuWGiQ5IoL9FxdCqVSvP/hx9+2GCi07hxY9G8eXOhVqs18y5evCg8PDxE//79NfPu3bsnXF1dxcsvv6z1+itXrggAYsyYMZp5//zzj85+iouLRfPmzUX9+vVNjv/QoUPlJjqPPvqoiIiIEPfv39fM27NnjwAgFi9eXOG+rl69Kjw9PcWrr76qNX/WrFlCoVBUmBAvX75cABBffPGF3uUZGRkCgJg3b57e5aWP9bvvvjOY6Fy/fl0UFRXpzB81apQAIDIzM8uNUwghJk6cKNzd3cXFixc18/Ly8oS/v794/vnnNfOKi4tFUFCQiIuL03r9119/LQCIzZs329W+iOSGVVdksaSkJEycOBEANNU3pasEylZdXbx4EQqFAvPmzcN7772HsLAweHl5oWPHjjh79izu37+PN998E8HBwfD19UXfvn31Vo2sXbtWUwVRtWpVdO3aFenp6ZVxyFpcXCr+Gl27dg1nzpxB9+7doVAoNPNDQ0MRGRmJjRs3aqpEXFxc4OLiAl9fX61t+Pj4wMXFBZ6enpp5tWrV0tmXq6sroqKikJWVJVn8AHD58mUcOnQIAwYMgJubm2Z+mzZt0KhRI2zYsKHCbfz666+4d+8ehgwZojV/yJAhEEJg48aN5b7+yy+/RNWqVdGvXz+jYi7L2GP18/ODu7u7zvzWrVsDeFDdV5ENGzbgiSeeQGhoqGaej48P4uPj8dNPP6G4uBgAsH//fmRnZ+u8J8899xyqVq1q1PtamfsikhsmOmSxYcOG4bXXXgMAfP/999i3bx/27duHRx55pNzXffzxx9izZw8+/vhjfPHFF/jzzz/Rq1cvDB06FP/++y+WLl2KuXPn4rfffsOwYcO0Xjt79my8+OKLiIiIwLfffotVq1ahoKAA7du3xx9//FFhzMXFxUZNQgjz35hSioqKAABKpVJnmVKpxJ07d/DXX38BANzd3ZGQkIAVK1Zg48aNyM/Px8WLFzF8+HD4+vpi+PDhFR7brl278PDDD0sSe4mTJ08CAJo3b66zrHnz5prlxmyjWbNmWvODgoLg7+9f7jbOnTuHXbt24YUXXkDVqlVNCV0y27Ztg5ubGxo1aqQ1v2zbrLt37+Kvv/4y+F7dvXsXFy5cAGD4fXV3d0eTJk103pPK3BeRI3CreBWi8tWpUwd169YFALRq1QphYWFGva569erYuHGj5lf21atXkZiYiCZNmuCHH37QrPfnn38iOTkZ+fn58PHxQVZWFqZNm4bRo0dj4cKFmvW6dOmChg0bYvr06Vi7dq3B/V68eBHh4eFGxbh9+3ZJGlIHBASgRo0a2LNnj9b8mzdvam4u165d08z/4IMP4Ovri2eeeQZqtRoAULduXWzbtg0NGjQod19JSUk4f/58haUjpiqJr0aNGjrLatSooRV/edtQKpXw9vY2eRtffvklAGDo0KHGhiyplJQUrFq1Cq+//jpq1qyptczV1RWurq6av2/cuAEhhMH3Cvjv/azofb148aLN9kXkCJjokM306NFDqyqhadOmAICePXtqrVcyPzMzE5GRkdiyZQuKi4sxcOBATZE8AHh6eqJDhw7Yvn17ufsNDg7GoUOHjIqxcePGRq1XERcXF4waNQr/+9//8L///Q8jRoxAfn4+EhMTcefOHc06JWbNmoX3338fSUlJaN++PfLz8/HRRx+hS5cuSElJQatWrfTu54svvsCsWbMwfvx49O7dWzNfCKHTW6h09ZMpSle9GZpf+rwAD27OJcsNvb68ZcXFxVixYgUefvhhPPbYY6aGbLEjR47g+eefx2OPPYY5c+bojU8fU47VmPe1svdF5AiY6JDNlP1V6eHhUe78e/fuAQD++ecfAMCjjz6qd7sVtcPw8PBAy5YtjYqx9C9nS02dOhW3bt3CzJkzMXXqVAAPkrohQ4bgiy++QO3atQEAp0+fxtSpUzF37lxMmDBB8/ru3bsjIiIC48aN05vMLVu2DCNGjMCrr76KefPmaS1bsWKFTrsMU6vlSkox9JW6XL9+Xeu8lW3fsmzZMgwePBg1a9bEvXv3cOfOHVSpUkVnG1FRUXr3vXnzZuTk5OCNN94wKWYppKena0oLN2/erLf6sSw/Pz8oFAqD7xXw3+e89PsaEBCgs66+0hdb7YtIjpjokOz4+/sDANatW6fV+NJYtqi6Ah6UoCxYsAAzZsxARkYG/P39ERQUhK5duyI8PBx16tQBABw7dgxCCJ1Ezt3dHS1atMDOnTt1tr1s2TIMGzYMgwYNwieffKLzy7xXr15Gl2IZEhkZCQA4ceIEevToobXsxIkTmuUAdPZV8n6XtM05ceIEYmJiNMtzcnJw9epVrW2U9uWXX8LDwwMDBgyw6BhMlZ6ejs6dOyM0NBQpKSk6DcQN8fLyQoMGDXDixAmdZSdOnICXlxfq1asHQPs9iYiI0KxXXFyMP//8Ey+++KLd7ItIjpjokCRKfuXevXvX6vvq2rUr3Nzc8Ndff+GZZ54x+fW2qLoqrWrVqpobzpEjR7B161bMnz9fKz7gQQ+ZDh06aOYXFhbiyJEjmoSoxPLlyzFs2DC8/PLL+OKLL/RWP9SsWVOnXYmpateujdatW+Orr77ChAkTNKVd+/fvx5kzZ5CYmKhZNzo6Wu82unXrBk9PTyxfvlwr0Vm+fDkUCgX69Omj85qcnBxs3rwZ8fHxFh+DKY4ePYrOnTujTp06SE1NhZ+fn0mv79u3L5KTk5GVlYWQkBAAQEFBAb7//ns8/fTTmqrDmJgYBAUFYfny5Vq9ydatW4dbt24hPj7ervZFJDdMdEgSJTfuDz/8EIMGDYK7uzsaN26MatWqSb6vsLAwzJgxA1OmTMGFCxfQrVs3+Pn54Z9//sHBgwfh7e2N6dOnG3y9h4eHwRuxOQ4fPqxpxJmfnw8hBNatWwfgQfVaSanTjh07cOjQITRv3hxCCBw8eBDvvfceunXrhtGjR2u2165dOzz66KNISkrCnTt38PjjjyMvLw+LFi1CRkYGVq1apVn3u+++w9ChQ9GyZUuMGDECBw8e1IqtVatWRlW1lMRb0jvn8OHDmp5Nzz77rGa99957D126dMFzzz2HhIQE5Obm4s0330RkZKRO1Zg+NWrUwNtvv4133nkHNWrUQFxcHA4dOoSkpCQMGzZMq5ShxIoVK1BcXKzT884cd+7cwebNmwE8SNAAYOfOnbh69Sq8vb3RvXt3AMCZM2fQuXNnAA/aS507dw7nzp3TbKd+/fp46KGHNH+7ubmhQ4cO2Lp1q2behAkTsGrVKvTs2RMzZsyAUqnEu+++i3v37iEpKUmznqurK+bOnYsBAwZgxIgRePHFF3Hu3DlMmjQJXbp0Qbdu3bSOoTL3ReQQbDaCDzmcyZMni+DgYOHi4qI1EFuHDh20BtEzNKjb9u3bBQDx3Xffac1ftmyZACAOHTqkNX/jxo2iU6dOwsfHRyiVShEaGiqeffZZ8dtvv1nl+AwZNGiQAKB3Kj3w3p49e0RMTIwm3sjISPH+++/rHZju5s2bYsqUKaJp06aiSpUqolatWqJjx446A7qVt2+YMIBjedsoKyUlRTz22GPC09NT1KhRQwwcOFDvwIXl+fDDD0WjRo2Eh4eHqFu3rpg2bZre90EIIRo1aiTCwsK0Blo0pKIBA0uW65tCQ0M165V85ow5r0I8eP/0DRR5/vx50adPH+Hj4yOqVKkinnzySZGWlqY3ttWrV4vmzZsLDw8PERgYKMaMGSMKCgp01qvMfRE5AoUQEg0UQkRERGRnOGAgEREROSwmOkREROSwmOgQERGRw2KiQ0RERDp+//139OrVC8HBwVAoFEY9Vmbnzp2IioqCp6cn6tWrh08++cT6gVaAiQ4RERHpuH37Nlq0aIGPPvrIqPUzMjLQo0cPtG/fHunp6XjrrbcwZswYrF+/3sqRlo+9roiIiKhcCoUCGzZs0DuoZ4k33ngDP/74I06fPq2ZN3LkSBw7dgz79u2rhCj144CBZajValy5cgXVqlXjA+6IiKhcQggUFBQgODi4wufsmevevXsoKiqSZFtCCJ17m1KpNGpg0Yrs27cPcXFxWvO6du2KL7/8Evfv39d5Bl5lYaJTxpUrVzRDqBMRERkjKytL5/EsUrh37x7CQ6siJ1clyfaqVq2KW7duac2bNm2a1gja5srJydF5WGxAQACKi4tx9epVBAUFWbwPczDRKaPkkQXt0ANusE32SURE8lCM+9iNzVZ53A0AFBUVISdXhYy0UPhUs6zEKL9AjfCoS8jKyoKPj49mvhSlOSXKlhaVtI6xZQ0JE50ySk6GG9zhpmCiQ0RE5fi/Vq7WvpH7VHOxONHRbMvHRyvRkUpgYCBycnK05uXm5sLNza1SH8hbFhMdIiIiO6cSaqgs7DqkEmppgjEgNjYWP/30k9a8lJQUREdH26x9DsDu5URERHZPDSHJZIpbt27h6NGjOHr0KIAH3cePHj2KzMxMAMDkyZMxcOBAzfojR47EpUuXMG7cOJw+fRpLly7Fl19+iQkTJkj2PpiDJTpERESk4/Dhw+jUqZPm73HjxgEABg0ahOXLlyM7O1uT9ABAeHg4Nm/ejLFjx+Ljjz9GcHAwFi5ciGeeeabSYy+NiQ4REZGdU0MNSyueTN1Cx44dUd5Qe8uXL9eZ16FDBxw5csTU0KyKiQ4REZGdUwkBlYXj+1r6erliGx0iIiJyWCzRISIisnPmNCbWtw1nxESHiIjIzqkhoGKiYxZWXREREZHDYokOERGRnWPVlfmY6BAREdk59royHxMdIiIiO6f+v8nSbTgjttEhIiIihyWbRKe4uBhvv/02wsPD4eXlhXr16mHGjBlQq//LUYUQSEpKQnBwMLy8vNCxY0ecOnXKhlETERFZTvV/va4snZyRbBKd9957D5988gk++ugjnD59GnPnzsW8efOwaNEizTpz587FggUL8NFHH+HQoUMIDAxEly5dUFBQYMPIiYiILKMS0kzOSDaJzr59+9C7d2/07NkTYWFhePbZZxEXF4fDhw8DeFCak5ycjClTpiA+Ph6RkZFYsWIF7ty5g9WrV9s4eiIiIrIF2SQ67dq1w9atW3H27FkAwLFjx7B792706NEDwIPHx+fk5CAuLk7zGqVSiQ4dOmDv3r02iZmIiEgKaokmZySbXldvvPEG8vLy0KRJE7i6ukKlUmHWrFl48cUXAQA5OTkAgICAAK3XBQQE4NKlSwa3W1hYiMLCQs3f+fn5VoieiIjIfGoooILC4m04I9mU6KxduxZfffUVVq9ejSNHjmDFihV4//33sWLFCq31FArtEymE0JlX2pw5c+Dr66uZQkJCrBI/ERERVT7ZJDoTJ07Em2++iRdeeAHNmjXDgAEDMHbsWMyZMwcAEBgYCOC/kp0Subm5OqU8pU2ePBl5eXmaKSsry3oHQUREZAa1kGZyRrJJdO7cuQMXF+1wXV1dNd3Lw8PDERgYiNTUVM3yoqIi7Ny5E23atDG4XaVSCR8fH62JiIjInqj+r+rK0skZyaaNTq9evTBr1izUrVsXDz/8MNLT07FgwQK88sorAB5UWSUmJmL27Nlo2LAhGjZsiNmzZ6NKlSro37+/jaMnIiIiW5BNorNo0SK88847SEhIQG5uLoKDgzFixAhMnTpVs86kSZNw9+5dJCQk4MaNG4iJiUFKSgqqVatmw8iJiIgsI0WJjLOW6CiEcNKnfBmQn58PX19fdERvuCncbR0OERHZsWJxHzvwA/Ly8qzS9KHknrT7ZDCqVrOstcmtAjXaRV6xWqz2SjYlOkRERM6KJTrmk01jZCIiIiJTsUSHiIjIzqngApWFZRMqiWKRGyY6REREdk4IBdTCsqonYeHr5YpVV0REROSwWKJDRERk59gY2XxMdIiIiOycSrhAJSxso+Okg8mw6oqIiIgcFkt0iIiI7JwaCqgtLJtQwzmLdJjoEBER2Tm20TEfq66IiIjIYbFEh4iIyM5J0xiZVVdERERkhx600bGs6snS18sVEx0iIiI7p5bgERDO2hiZbXSIiIjIYbFEh4iIyM6xjY75mOgQERHZOTVcOI6OmVh1RURERA6LJTpERER2TiUUUAkLBwy08PVyxUSHiIjIzqkk6HWlYtUVERERkWNhiQ4REZGdUwsXqC3sdaVmrysiIiKyR6y6Mh+rroiIiMhhsUSHiIjIzqlhea8ptTShyA4THSIiIjsnzYCBzlmJw0SHiIjIzknzCAjnTHSc86iJiIjIKbBEh4iIyM6poYAalrbR4cjIREREZIdYdWU+WR315cuX8fLLL6NmzZqoUqUKWrZsibS0NM1yIQSSkpIQHBwMLy8vdOzYEadOnbJhxERERGRLskl0bty4gbZt28Ld3R2//PIL/vjjD8yfPx/Vq1fXrDN37lwsWLAAH330EQ4dOoTAwEB06dIFBQUFtguciIjIQiUDBlo6OSPZVF299957CAkJwbJlyzTzwsLCNP8XQiA5ORlTpkxBfHw8AGDFihUICAjA6tWrMWLEiMoOmYiISBJqoYDa0nF0nPTp5bJJ73788UdER0fjueeeQ61atdCqVSt8/vnnmuUZGRnIyclBXFycZp5SqUSHDh2wd+9eW4RMRERENiabROfChQtYsmQJGjZsiC1btmDkyJEYM2YMVq5cCQDIyckBAAQEBGi9LiAgQLNMn8LCQuTn52tNRERE9kQtQbUVBwy0c2q1GtHR0Zg9ezYAoFWrVjh16hSWLFmCgQMHatZTKLSL5oQQOvNKmzNnDqZPn26doImIiCQgzdPLnTPRkc1RBwUFISIiQmte06ZNkZmZCQAIDAwEAJ3Sm9zcXJ1SntImT56MvLw8zZSVlSVx5ERERGQrskl02rZtizNnzmjNO3v2LEJDQwEA4eHhCAwMRGpqqmZ5UVERdu7ciTZt2hjcrlKphI+Pj9ZERERkT1RQSDI5I9lUXY0dOxZt2rTB7Nmz8fzzz+PgwYP47LPP8NlnnwF4UGWVmJiI2bNno2HDhmjYsCFmz56NKlWqoH///jaOnoiIyHysujKfbBKdRx99FBs2bMDkyZMxY8YMhIeHIzk5GS+99JJmnUmTJuHu3btISEjAjRs3EBMTg5SUFFSrVs2GkRMREVlGBVhcIqOSJhTZUQghhK2DsCf5+fnw9fVFR/SGm8Ld1uEQEZEdKxb3sQM/IC8vzypNH0ruSVMPdIZnVcvuSfdu3ceMmN+sFqu9kk2JDhERkbNi1ZX5mOgQERHZOT7U03zOedQW2HLlmK1DICIiqhSLFy9GeHg4PD09ERUVhV27dpW7/tdff40WLVqgSpUqCAoKwpAhQ3Dt2rVKilY/JjpERER2TkABtYWTMLEx89q1a5GYmIgpU6YgPT0d7du3R/fu3TXj15W1e/duDBw4EEOHDsWpU6fw3Xff4dChQxg2bJgUb4HZmOiYoKQ0h6U6RERUmUqqriydTLFgwQIMHToUw4YNQ9OmTZGcnIyQkBAsWbJE7/r79+9HWFgYxowZg/DwcLRr1w4jRozA4cOHpXgLzMZEx0hMboiIyBGUfb5jYWGhzjpFRUVIS0vTelA2AMTFxRl8UHabNm3w999/Y/PmzRBC4J9//sG6devQs2dPqxyHsZjoGKFsktM1uIWNIiEiImekFgpJJgAICQmBr6+vZpozZ47O/q5evQqVSmXSg7LbtGmDr7/+Gv369YOHhwcCAwNRvXp1LFq0SPo3xATsdVWB0kkOExwiIrKFkieQW7oNAMjKytIaR0epVBp8jSkPyv7jjz8wZswYTJ06FV27dkV2djYmTpyIkSNH4ssvv7Qodksw0TESkxwiInIExjzX0d/fH66uriY9KHvOnDlo27YtJk6cCABo3rw5vL290b59e8ycORNBQUHSHICJWHVlwIazJ9guh4iI7IKUVVfG8PDwQFRUlNaDsgEgNTXV4IOy79y5AxcX7bTC1dUVwIOSIFthiY4RWJpDRES2pIYL1BaWTZj6+nHjxmHAgAGIjo5GbGwsPvvsM2RmZmLkyJEAgMmTJ+Py5ctYuXIlAKBXr14YPnw4lixZoqm6SkxMROvWrREcHGxR7JZgokNERGSELVeO2eyHr0oooDKhRMbQNkzRr18/XLt2DTNmzEB2djYiIyOxefNmhIaGAgCys7O1xtQZPHgwCgoK8NFHH2H8+PGoXr06nnjiCbz33nsWxW0pPtSzjJIHqN04Ww/PNX7E1uEQEZGd0JfoVNZDPf/frngoLXyoZ+Gt+1jS/ns+1JMe6NuoGdwsS56JiMiBlE5yStpw5heo4NfI+vs2tY2NoW04IyY6REREdk5I8PRy4aQP9WSiQ0REDq+kBKakVIZjpDkPJjpERGRTlZl06Bs2xNT9l06aisV9ABcki88QFRRQmfhQTn3bcEbOWY5FRER2Q1/bF1NsuXKs3Icum7tNQ7oGt6j0UiC1kGIsnUoN2W4w0SEiIrtSOmmRYuBWU5KSipImkh8mOkREZHPllZKYmnA4YoKi/r/GyJZOzsg5j5qIqAxHvDnKWXnnw1BJT+lxbkrWsfS8SlUVZik1FJJMzoiJjh0z9GXiBZnIOvjdsq2y73/ZtjvGJC76BvUr2+PKnLjK7r+yPyslIyNbOjkj9rqyU2W/TF2DW/Ai7GAsvfiS8cp7r8t+r2w5zL+zMSZpMWe5vvm8hjovJjoSseZNq2Sb+sZ/ICLjcewU+1HZ1zG5XzelaGPjrG10mOhIpOTXghS/Bg39wpT7F5XInlTUBoSJkPR4DTOfGhI8AoJtdMgU+pIRa2y3vP2Zsk+pummS5XguTGdpd2NTkhZbjJFiDfZYYuIo7y3JCxMdM+hrjGbpgFfWVDoee4uNdBnq5VHeTV6qHib2pLwfE6YeryO9LxUxVI0udS+kiq4rjviZtCUhQY8r4aQlOqy6MoKxDYJLL6+shqYsYpcXSy/65bXTcsTqTWOOh98B7feg5HNgjffE2JJsQ9dMOX4+pRrbx1J8ern5WKJTAWN+tdiaPcRAFTOUnJRdx1DX2PK2Y8pyqV5jDeaWAEhdemAv74e59HXLLqk2sqSLtb7/G1rH2NfYs/LeK2dPruWEiY6VmdqOpjL2Q/ZB34WyootnRQ1ozWHr8ZqMrQqxdPuOqrwfYLY4dnv9QSh3HBnZfLI96jlz5kChUCAxMVEzTwiBpKQkBAcHw8vLCx07dsSpU6essn9DbXKMGaejslmrrp50GXpvK2pbU3odKc6PsVU+xpQOSfE50XeM+v6VkjN9xst+x0tXGUnRANhZ3kd7ZvkDPS2v+pIrWSY6hw4dwmeffYbmzZtrzZ87dy4WLFiAjz76CIcOHUJgYCC6dOmCgoICq8dUUbJjDEO/8C0tcrYkJrKcsUmHvnVtkQAYWq4vNmNKmCq7dKEykkR7Ut6PK3MfZqlvW0RyJbtE59atW3jppZfw+eefw8/PTzNfCIHk5GRMmTIF8fHxiIyMxIoVK3Dnzh2sXr3a5P1sOHvC5GoCqZKdiuqFzanyMIQXMesxJhGwZgKqr4TI3PY9FSUrhvZRdn177p3oSEz5YWRKCSTZDp91ZT6jel3Fx8ebvOFPPvkEtWrVMvl1FRk1ahR69uyJzp07Y+bMmZr5GRkZyMnJQVxcnGaeUqlEhw4dsHfvXowYMULSOAz1finb+0HfOqXXLb09U4qapbhBspTHeMb8Qjb15lAZ77812ogZc1O0dbsfMk55iai+5WQ77HVlPqMSnY0bN+L555+Hl5eXURtdvXo1bt26JXmis2bNGhw5cgSHDh3SWZaTkwMACAgI0JofEBCAS5cuGdxmYWEhCgsLNX/n5+dbHGdJslP2l21Fv2aZeNgnayQ5ZP+sXeJmj+TeS8qRMdExn9Hj6CxcuNDoxGXdunVmB2RIVlYWXn/9daSkpMDT09PgegqF9okUQujMK23OnDmYPn26ZHHKiTNeyE1VXukFnz3muBxxTCKyjg1nT8Cvka2joPIY1UZn+/btqFGjhtEb/eWXX1C7dm2zg9InLS0Nubm5iIqKgpubG9zc3LBz504sXLgQbm5umpKckpKdErm5uTqlPKVNnjwZeXl5mikrK8vomExtf2GNrsFkPWy34Lxs2T3b2tjr0jj29iOQva7MZ1Si06FDB7i5GT+Icrt27aBUKs0OSp8nn3wSJ06cwNGjRzVTdHQ0XnrpJRw9ehT16tVDYGAgUlNTNa8pKirCzp070aZNG4PbVSqV8PHx0ZqMUdFFQt8vwtJfHH3dQcl+mHIT4LkjueFnVjp9GzWrlP0w0TGfWY+AUKvVOH/+PHJzc6FWq7WWPf7445IEVla1atUQGRmpNc/b2xs1a9bUzE9MTMTs2bPRsGFDNGzYELNnz0aVKlXQv39/q8RkqtJtd4wZEZdsp7KqLvirmiobrzPGMfaazKor+2dyorN//370798fly5dghBCa5lCoYBKpZIsOFNNmjQJd+/eRUJCAm7cuIGYmBikpKSgWrVqlbJ/Y7vOsv5fHkonpYZ6FpV9vpAp2yayFV5/5EcAFncPFxWv4pBMTnRGjhyJ6OhobNq0CUFBQeU29LW2HTt2aP2tUCiQlJSEpKSkStm/oQfWVdQ7x1Y3OSZY5jNmOAFTt0VE9q28a3rJsnzrj0cLgL2uLGFyonPu3DmsW7cODRo0sEY8dseY8WxMbbRa0RgjZcfU0bfcXLzJmqainlVl210Z03aLiOSl9A8a/liUH5MTnZiYGJw/f97hE52+jZrBTeFe4XrWGqLf0PZ5o7QvppTo8NzJkxQ/MMgx2DLJYYmO+YxKdI4fP675/2uvvYbx48cjJycHzZo1g7u7djJQ9vlTjo7VQY6vovZWROScuga3QLG4D+CC1ffFRMd8RiU6LVu2hEKh0Gp8/Morr2j+X7LM1o2R5ciY4lAmU7ZjySMUDCVBPJdkS/z8mY/PapMnoxKdjIwMa8chW5Z+2I15Pb9QtmNMklnR4zzK67lF8uEIQ0DwM2geKR+kbC6W6JjPqEQnNDRU8//ff/8dbdq00RlAsLi4GHv37tVal8jRlZfkOMKNkbSxvQ7ZihAKCAsTFUtfL1dGjYxcWqdOnXD9+nWd+Xl5eejUqZMkQckJL3iOz5RzXFJywyTHscnxEQpyi9de2Mv3WA2FJJMzMjnRMfSQzGvXrsHb21uSoIjkoqIibUd+ZhLJBz9/5MyM7l4eHx8P4EHD48GDB2s9y0qlUuH48ePlPlPKkbH9hfMqbwBBfiaI5M1eSnMAttGxhNGJjq+vL4AHJTrVqlWDl5eXZpmHhwcee+wxDB8+XPoIZcKY1viWtti3py8d6cdz5FzkUEXJhNs89nZe2UbHfEYnOsuWLYMQAkIILFq0qNKeHyVHpoyQy4uQPLDUjuSIn1kiE9voCCGwevVq5OTkWCsep9M1uIVm0jef5Ic3F+fE807WVFJ1ZenkjExKdFxcXNCwYUNcu3bNWvE4DHMSldJPwi67HSY98sCbnfMp75EtRFIpqbqydHJGJve6mjt3LiZOnIiTJ09aIx6Hoy95MWZ9si+8gZG9KeniLseu7kSVyeSHer788su4c+cOWrRoAQ8PD61GyQD0jrHj7OwheeFAZ5Zhmyoylq0aKJf+bPJ77niEBFVPzlqiY3Kik5ycbIUwyJrKFq3zImgeJjlkiDUf82HsM9RIOvb4HgsApR43afY2nJHJic6gQYOsEQdZEXsMEVmfNZIdfdsyZfv87hOZkegADwYI3LhxI06fPg2FQoGIiAg8/fTTcHV1lTo+AkthiORGiu8sExTbsNdrrRoKKCx8hIOzPgLC5ETn/Pnz6NGjBy5fvozGjRtDCIGzZ88iJCQEmzZtQv369a0Rp1OT4iGRpX/ZMXEyHW86ZCp+z+TF3s8VBww0n8m9rsaMGYP69esjKysLR44cQXp6OjIzMxEeHo4xY8ZYI0aC9Dda3riJpGVqD8vyWPr95Pfb8XAcHfOZnOjs3LkTc+fORY0aNTTzatasiXfffRc7d+6UNDiSVtkLsL7nNJEuvi9kDEvb0xCRdZhcdaVUKlFQUKAz/9atW/Dw8JAkKDJM6uJwXoiJpFN6GAd+t+TD3qutgAc9rizudeWk3a5MLtF56qmn8Oqrr+LAgQOaZ1/t378fI0eOxNNPP22NGAnSfhHl8KUmIssw0XIsHBnZfCYnOgsXLkT9+vURGxsLT09PeHp6om3btmjQoAE+/PBDa8RIZVjjAla6wbOh0VZLN2Z2Fs50rGQd/AzZN/7wc3wmV11Vr14dP/zwA86dO4c///wTQghERESgQYMG1oiPJKbvS13eF728ZMeZLhCsiiBT2UNPx7KjJfMzLF/sdWU+s8bRAYCGDRuiYcOGUsZCFZDqQsWLnXH4PpG57PGHAD/P8qYWCigsTFSctdeVyYmOSqXC8uXLsXXrVuTm5kKtVmst37Ztm2TBkWFSjKljbxdiIkfG7xyRbZic6Lz++utYvnw5evbsicjISCgUzpkhyl15VVjG/vJz5As3H5BIlrLm869IGnL6brPXlflMTnTWrFmDb7/9Fj169LBGPGQCayUaplycHTHZ4Xgo5AhM/eFC9u1BomNpGx2JgpEZk3tdeXh4sOGxDdljUuEoF1J9Pc2ILGGLQTnLJjj2eM0gqkwmJzrjx4/Hhx9+COGsqaGTMOXiWHpda1zIrX1zqCjBYfJDcqLv88pkR5fc3hOOo2M+kxOd3bt34+uvv0b9+vXRq1cvxMfHa03WMmfOHDz66KOoVq0aatWqhT59+uDMmTNa6wghkJSUhODgYHh5eaFjx444deqU1WKylcr4gppyc7fWc7isUcLCx16QrVV2qQ5LdhyDkGhyRiYnOtWrV0ffvn3RoUMH+Pv7w9fXV2uylp07d2LUqFHYv38/UlNTUVxcjLi4ONy+fVuzzty5c7FgwQJ89NFHOHToEAIDA9GlSxe9j6wg+2TNQQnLbptJDslV1+AWWlNZhhJ6Q+uT/WOJjvlMboy8bNkyo9bbs2cPoqOjoVQqTQ5Kn19//VUnjlq1aiEtLQ2PP/44hBBITk7GlClTNCVLK1asQEBAAFavXo0RI0ZIEoe9sUZjYHMSgMqoXrLkOJnUkKMyp+MAe4ORMzG5RMdY3bt3x+XLl621eeTl5QGA5inqGRkZyMnJQVxcnGYdpVKJDh06YO/evQa3U1hYiPz8fK3JmTnLxc9ZjpPsjzEJe2WUujh7yY7srgGsuzKb1RIdazZWFkJg3LhxaNeuHSIjIwEAOTk5AICAgACtdQMCAjTL9JkzZ45W1VtISIjV4rYW2X1hDajoOMw9zrKvY/G9/XPk82PL76u+Z9mVVwXmyGR3vFJUW5lRdbV48WKEh4fD09MTUVFR2LVrV7nrFxYWYsqUKQgNDYVSqUT9+vWxdOlSc49aElZLdKxp9OjROH78OL755hudZWUHMBRClDuo4eTJk5GXl6eZsrKyJI+XKuYoyRpJw9E/D8Ycn6EbsTVv0LK7+VvA0T9jUli7di0SExMxZcoUpKeno3379ujevTsyMzMNvub555/H1q1b8eWXX+LMmTP45ptv0KRJk0qMWpfsEp3XXnsNP/74I7Zv3446depo5gcGBgKATulNbm6uTilPaUqlEj4+PlqTs5LDF1+qGOVwrOTYLEl2TNmGqXE4U7IjJyUjI1s6mWLBggUYOnQohg0bhqZNmyI5ORkhISFYsmSJ3vV//fVX7Ny5E5s3b0bnzp0RFhaG1q1bo02bNhK8A+aTTaIjhMDo0aPx/fffY9u2bQgPD9daHh4ejsDAQKSmpmrmFRUVYefOnTZ/k62h7MVIzjdua8cuxXvljEX7ZD+kql4y9Hp9VVrlrU+VT8peV2XbpRYWFursr6ioCGlpaVrtXgEgLi7OYLvXH3/8EdHR0Zg7dy5q166NRo0aYcKECbh79670b4gJrJboSP0MrFGjRuGrr77C6tWrUa1aNeTk5CAnJ0fzBioUCiQmJmL27NnYsGEDTp48icGDB6NKlSro37+/pLHYCykvQlImG3JOuogqkzFjRZX3PTf1GmDqd5PfZccUEhKi1TZ1zpw5OutcvXoVKpXKpHavFy5cwO7du3Hy5Els2LABycnJWLduHUaNGmWV4zCWyd3LjSV1Y+SSorKOHTtqzV+2bBkGDx4MAJg0aRLu3r2LhIQE3LhxAzExMUhJSUG1atUkjcVeye25U5ZeRE05XnanJXtm7neXn2knYmZjYp1tAMjKytJqplHeMDCmtHtVq9VQKBT4+uuvNePqLViwAM8++yw+/vhjeHl5WRa/mUxOdO7evQshBKpUqQIAuHTpEjZs2ICIiAitIi6pB+kzJnFSKBRISkpCUlKSpPt2VLxIGkdOySPJl9x+qMid3N5rKZ9ebkx7VH9/f7i6uprU7jUoKAi1a9fWGjy4adOmEELg77//RsOGDS07ADOZXHXVu3dvrFy5EgBw8+ZNxMTEYP78+ejdu7fBBkpkf2yd5EhRmmPqdsy9sHEkZaos+qqy+LkjW/Dw8EBUVJRWu1cASE1NNdjutW3btrhy5Qpu3bqlmXf27Fm4uLhodR6qbCYnOkeOHEH79u0BAOvWrUNAQAAuXbqElStXYuHChZIHSI5HqiSnssjtlx/JX9mGwYY+82UfBcHPqgOzwYCB48aNwxdffIGlS5fi9OnTGDt2LDIzMzFy5EgAD4ZnGThwoGb9/v37o2bNmhgyZAj++OMP/P7775g4cSJeeeUVm1VbAWYkOnfu3NG0eUlJSUF8fDxcXFzw2GOP4dKlS5IHSOVjvb5peCMgR8fPuGOyxbOu+vXrh+TkZMyYMQMtW7bE77//js2bNyM0NBQAkJ2drTWmTtWqVZGamoqbN28iOjoaL730Enr16mXzQhCT2+g0aNAAGzduRN++fbFlyxaMHTsWwIN6O2ceg8aWjG1oW5kJjiO1N3CkYyH54ueQbPEIh4SEBCQkJOhdtnz5cp15TZo00anusjWTS3SmTp2KCRMmaAYCio2NBfCgdKdVq1aSB0hERERkLpNLdJ599lm0a9cO2dnZaNHiv18XTz75JPr27StpcGS88kp1nLmqSkrsok62Vvr5VORczKl60rcNZ2TWgIGBgYGoVq0aUlNTNQP2PfroozZ/ngVpM2YwMkdizWN1tveS7Bs/i06ITy83m8mJzrVr1/Dkk0+iUaNG6NGjB7KzswEAw4YNw/jx4yUPkIxXusTBmS6ElXGs/AVN9obJN5FxTE50xo4dC3d3d2RmZmoGDQQetM7+9ddfJQ2OzGMvF7/KiqN0EmKLfRLZEsfdcRYKiSbnY3Kik5KSgvfee09n8J+GDRuye7kMOMMN2hoXet48yJGVXBec4fpQQnbfaVZdmc3kROf27dtaJTklrl69Wu7zMqhySPkAQLmorCL80gOyye4iSQ7Nks9j2Ub2jnqd0IffY+dgcqLz+OOPax4BATx4vpRarca8efPQqVMnSYMjadhyxFRbtZ+RqgeaoffNmW4G5LhKl+TwM23nWKJjNpO7l8+bNw8dO3bE4cOHUVRUhEmTJuHUqVO4fv069uzZY40YyUS8YD1QeoA1cxOu0q/jgG0kB8YMg1DR51hfuzdHHV5BNt9rCZ9e7mxMLtGJiIjA8ePH8eijj6JLly64ffs24uPjkZ6ejvr161sjRnIglX2htMb+HPWCT/Jmrc9k6dIeWSQERGWYXKIDPBhHZ8aMGVLHQk5C7omCo//CJfkqKZ3Q1+5Gqs+qI7ZTk0OpjhAPJku34YzMGjBw165dePnll9GmTRtcvnwZALBq1Srs3r1b0uBIera8OFlz3+W1pTFnv4a2x5Fpyd6V/byXfAdYKiNzbKNjNpMTnfXr16Nr167w8vLCkSNHUFhYCAAoKCjA7NmzJQ+Q5E+OyZWh1/EmQXKhr2RH6u1TJSppo2Pp5IRMTnRmzpyJTz75BJ9//jnc3d0189u0aYMjR45IGhw5Dn2/Mq21bWvjBZ7snaEhF6T+7DrSd8GRquJIm8mJzpkzZ/D444/rzPfx8cHNmzeliImsxNG/yNa+6Jb8Onb095EcR9legyRfCiHN5IxMTnSCgoJw/vx5nfm7d+9GvXr1JAmKyFSVcREv2z6HNw4ix2LX32m20TGbyYnOiBEj8Prrr+PAgQNQKBS4cuUKvv76a0yYMAEJCQnWiNFmSn692/WHn7RIUapT0eBp/DwQ/ceRqq8Afr8dkcndyydNmoS8vDx06tQJ9+7dw+OPPw6lUokJEyZg9OjR1ojRJjacPQHA1dZhOCRrXUgMda211r6I6IGyyY7cvx922d2cAwaazaQSHZVKhZ07d2L8+PG4evUqDh48iP379+Pff//F//73P2vFaBcc4YvrSPRdhKQqzZFye0TOyJm+Ow9+FFcCVl2ZzaREx9XVFV27dkVeXh6qVKmC6OhotG7dGlWrVrVWfEQGlfcr0pkutEQkPX0/Dss2ZXC0H5COyuQ2Os2aNcOFCxesEQuRyaRMaByt+J3Ilhzhx0bJNUBfglPp1weW6JjN5ERn1qxZmDBhAn7++WdkZ2cjPz9fa3JkpRsny+kmKKdYjSX1MTnCRZnI3jjC98purp9MdMxmcqLTrVs3HDt2DE8//TTq1KkDPz8/+Pn5oXr16vDz87NGjHbLbr4AToqPYyAiciwrV67UPHGhtKKiIqxcudKsbZrc62r79u1m7Yhsw1mSsdKD+Zma+Ohb31neNyKSCSfpdTVkyBB069YNtWrV0ppfUFCAIUOGYODAgSZv0+REp0OHDibvhMhaLOkGWt7r+GRycjS2Kvnkd0kaUoxsLIeRkYUQUCh0E7K///4bvr6+Zm3T5ETn+PHjeucrFAp4enqibt26UCqVZgVD0nK2i4slpTpERHZNijY2dpzotGrVCgqFAgqFAk8++STc3P5LT1QqFTIyMtCtWzeztm1yotOyZUu92VYJd3d39OvXD59++ik8PT3NCspSixcvxrx585CdnY2HH34YycnJaN++vU1isRVnSnJKJzZlk53KerChM73fRERS69OnDwDg6NGj6Nq1q9awNR4eHggLC8Mzzzxj1rZNTnQ2bNiAN954AxMnTkTr1q0hhMChQ4cwf/58TJs2DcXFxXjzzTfx9ttv4/333zcrKEusXbsWiYmJWLx4Mdq2bYtPP/0U3bt3xx9//IG6detKui97LTVw9puuVIlH6e2U3WZFfxMRkfGmTZsGAAgLC8MLL7wgac2QyYnOrFmz8OGHH6Jr166aec2bN0edOnXwzjvv4ODBg/D29sb48eNtkugsWLAAQ4cOxbBhwwAAycnJ2LJlC5YsWYI5c+ZUejxkG1IkHmV7dZVObMtum0kO2St7/UFGplFAgjY6kkRiXU888QT+/fdf1KlTBwBw8OBBrF69GhEREXj11VfN2qbJ3ctPnDiB0NBQnfmhoaE4ceLBUNgtW7ZEdna2WQFZoqioCGlpaYiLi9OaHxcXh7179+p9TWFhoUONBeSsN1ypj1vf4GCGxlBy1vecyBhsM0em6N+/v6Z3d05ODjp37oyDBw/irbfewowZM8zapsmJTpMmTfDuu++iqKhIM+/+/ft499130aRJEwDA5cuXERAQYFZAlrh69SpUKpXOvgMCApCTk6P3NXPmzIGvr69mCgkJqYxQyYHwIk5kmL4SUTJDSfdySyc7d/LkSbRu3RoA8O2336JZs2bYu3cvVq9ejeXLl5u1TZOrrj7++GPNYIHNmzeHQqHA8ePHoVKp8PPPPwMALly4gISEBLMCkkLZxtKGuqsBwOTJkzFu3DjN3/n5+bJNdpy9ZMFWvxzLvu/lVXERObOS7wa/F2Zw8F5XJe7fv69pn/Pbb7/h6aefBvCgkMXcmiKTE502bdrg4sWL+Oqrr3D27FkIIfDss8+if//+qFatGgBgwIABZgVjKX9/f7i6uuqU3uTm5hosYVIqlewO76AMtdOpKCEq7+GghnpxGbpws5EykS4mPGTIww8/jE8++QQ9e/ZEamoq/ve//wEArly5gpo1a5q1TZMTHQCoWrUqRo4cadYOrcnDwwNRUVFITU1F3759NfNTU1PRu3dvG0ZmfbxgGGZJslE6KTK0DX29rwwlUrzAE/2HPwRM4CQlOu+99x769u2LefPmYdCgQWjR4sE188cff9RUaZnK5DY6ALBq1Sq0a9cOwcHBuHTpEgDggw8+wA8//GBWEFIaN24cvvjiCyxduhSnT5/G2LFjkZmZaZXEjF9Q+2fphdTUqjBDTzsuuy22VyAiU5SMjGzpZO9iYmLw999/4+rVq1i6dCkuXbqE5ORkhIaG4tNPPzVrmyYnOkuWLMG4cePQvXt33LhxAyqVCgDg5+eH5ORks4KQUr9+/ZCcnIwZM2agZcuW+P3337F582a9PcUcBROu/5T3XpibXJjz8NCuwS0qXN+YdYgsZe/Xh5LvARstEwD07t0bq1atgp+fH27evInWrVtj/vz5SExMxLp168zapsmJzqJFi/D5559jypQpWkM0R0dHa7qX21pCQgIuXryIwsJCpKWl4fHHH7favuz9IkL/MaXLeGkVPRNL379lq7OM2QaRNcjp8yWnWCudkGiyc0eOHNE8yWDdunUIDAzEpUuXsHLlSixcuNCsbZqc6GRkZKBVq1Y685VKJW7fvm1WEETWZMrFU98YOeUlQqWrqgy93tgYeZEneoDfBT2cJNG5c+eOpmNTSkoK4uPj4eLigscee0zTVMZUJic64eHhOHr0qM78X375BREREWYFQeZjiZIuc5MNY9azJGkiqmxMGByHs7TRadCgATZu3IisrCxs2bJFMwBwbm4ufHx8zNqmyYnOxIkTMWrUKKxduxZCCBw8eBCzZs3CW2+9hYkTJ5oVhNzxhmZ/yusibipLe0pVVDWmb1/mLidyFPysO6epU6diwoQJCAsLQ0xMDGJjYwE8KN3RV5tkDJO7lw8ZMgTFxcWYNGkS7ty5g/79+6N27dr48MMP8cILL5gVBJE1SfXMK0u3ZU6j5vJiIXJ0HI6hFClGNpbByMjPPvss2rVrh+zsbE3XcgB48skntYaNMYVZ4+gMHz4cw4cPx9WrV6FWq1GrVi2zdk5kTXK9OJZ9anppfGI6mcJRnjPFzzqcZhwdAAgMDERgYKDWPHPH0AHMHEenhL+/P5MckgW5XexL/5K1tKEzOS+5fe6JrMGoEp1WrVoZfFZUWUeOHLEoILlylF9Ojqh01297SA6M/ayUjpePmCBz8LrkOKRoTCyHxsjWYFSi06dPH83/7927h8WLFyMiIkLTSGj//v04deqUTR/kSWRI6Yu9oYu+PSYLxsRkj3GTfWGy4yCcqOpKakYlOtOmTdP8f9iwYRgzZozmQVul18nKypI2OiKJlNcQWOpkoaJSFt50iIgqj8ltdL777jsMHDhQZ/7LL7+M9evXSxIUkbXoGwBQ6sH6LO2GLkXvLKLSWPLnAKQYQ4clOsbx8vLC7t270bBhQ635u3fvhqenp2SByRGLiOWlvHYvpdcp+3fZ9Uy9iUg5xg8ROQlWXZnN5EQnMTER/+///T+kpaXhscceA/Cgjc7SpUsxdepUyQOUE960HIMxvZukagRckkjp22dJSRN/jRMRmc/kqqs333wTK1euRHp6OsaMGYMxY8YgPT0dy5cvx5tvvmmNGKkcTK6sS9/7K/V7XlEiY+r++JkgR8NkH07zrCtrMGscneeffx579uzB9evXcf36dezZswfPP/+81LHJDr+MjsdQdWRlnGtL2voQlcXPhbw5y7OurMGiAQOJnIEtB+oraZxsTikNS3bIETBBI0sZlejUqFEDV69eNXqjdevWNftx6kSky5yLPW8QRERGNka+efMmfvnlF/j6+hq10WvXrkGlUlkUGJEcmdN4mA2OifTj96IU9roym9G9rgYNGmTNOIgcgqGu47xgkz3gEBjyxUdAmM+oREetVls7DofACwgB5ffU4jOriIgqFxsjOxEmYtZX3nvMRIbsgVw+h3KJs1Kxa7lZTB4wkIiIiCoZ2+iYjSU6ToKlObbHc0BEVPlYouMA+LRs2zH2eVcshiciS7AxsvlYoiMRJhPOp/Q5l+L8S/0UdSJyIHwEhNnMSnT++usvvP3223jxxReRm5sLAPj1119x6tQpSYMj47A0p/KZ+gwsngciItswOdHZuXMnmjVrhgMHDuD777/HrVu3AADHjx/HtGnTJA+QzMebq33h+SAic/FZV+Yz6+nlM2fORGpqKjw8PDTzO3XqhH379kkaHJmPN1XrseS9LftanieyhZJnqLHtmIzYqOpq8eLFCA8Ph6enJ6KiorBr1y6jXrdnzx64ubmhZcuWpu9UYiYnOidOnEDfvn115j/00EO4du2aJEGR8Uy5UPGiZjmp2uIQ2Qt7vC7YY0w2Z4NEZ+3atUhMTMSUKVOQnp6O9u3bo3v37sjMzCz3dXl5eRg4cCCefPJJ03ZoJSYnOtWrV0d2drbO/PT0dNSuXVuSoKhi5f0a441U3nj+qLIxsSB9FixYgKFDh2LYsGFo2rQpkpOTERISgiVLlpT7uhEjRqB///6IjY2tpEjLZ3Ki079/f7zxxhvIycmBQqGAWq3Gnj17MGHCBAwcONAaMRI5HLn0sJJLnESOTso2Ovn5+VpTYWGhzv6KioqQlpaGuLg4rflxcXHYu3evwTiXLVuGv/76y67a7Jqc6MyaNQt169ZF7dq1cevWLURERODxxx9HmzZt8Pbbb1sjRly8eBFDhw5FeHg4vLy8UL9+fUybNg1FRUVa62VmZqJXr17w9vaGv78/xowZo7OOI+CYLbbhjDd8tuNwHjzPdk7CqquQkBD4+vpqpjlz5ujs7urVq1CpVAgICNCaHxAQgJycHL0hnjt3Dm+++Sa+/vpruLnZzzB9Jkfi7u6Or7/+GjNmzEB6ejrUajVatWqFhg0bWiM+AMCff/4JtVqNTz/9FA0aNMDJkycxfPhw3L59G++//z4AQKVSoWfPnnjooYewe/duXLt2DYMGDYIQAosWLbJabCUq66nAvBgREZElsrKy4OPjo/lbqVQaXFehUGj9LYTQmQc8uAf3798f06dPR6NGjaQLVgJmp1z169dH/fr1pYzFoG7duqFbt26av+vVq4czZ85gyZIlmkQnJSUFf/zxB7KyshAcHAwAmD9/PgYPHoxZs2ZpnVQiU1V2aQ6fZk5EWqQY8O//Xu/j41PhPdHf3x+urq46pTe5ubk6pTwAUFBQgMOHDyM9PR2jR48GAKjVaggh4ObmhpSUFDzxxBMWHoB5jEp0xo0bZ/QGFyxYYHYwpsjLy0ONGjU0f+/btw+RkZGaJAcAunbtisLCQqSlpaFTp056t1NYWKhVP5mfn2+9oC3EG59zYbJDRCUq+xEQHh4eiIqKQmpqqlZP69TUVPTu3VtnfR8fH5w4cUJr3uLFi7Ft2zasW7cO4eHhZsdtKaMSnfT0dK2/09LSoFKp0LhxYwDA2bNn4erqiqioKOkj1OOvv/7CokWLMH/+fM28nJwcnSzTz88PHh4eBusTAWDOnDmYPn261WK1F7xhms4e2uQw2SFnw8+7/Rg3bhwGDBiA6OhoxMbG4rPPPkNmZiZGjhwJAJg8eTIuX76MlStXwsXFBZGRkVqvr1WrFjw9PXXmVzajEp3t27dr/r9gwQJUq1YNK1asgJ+fHwDgxo0bGDJkCNq3b2/SzpOSkipMMg4dOoTo6GjN31euXEG3bt3w3HPPYdiwYVrr6qs3NFSfWGLy5MlaJVb5+fkICQkx9hDskj3coOXMEd8/JkxEMidh1ZWx+vXrh2vXrmHGjBnIzs5GZGQkNm/ejNDQUABAdnZ2hWPq2AOFEMKkQ69duzZSUlLw8MMPa80/efIk4uLicOXKFaO3dfXqVVy9erXcdcLCwuDp6QngQZLTqVMnxMTEYPny5XBx+a/T2NSpU/HDDz/g2LH/LuY3btxAjRo1sG3bNoNVV2Xl5+fD19cXN87Wg081V6OPpYQ1b5LG3qj0xcCbnHHsMcnhuaPKYuvPvxw/6/kFKvg1uoC8vDyrtAUtuSc1HT0brkpPi7alKryH0x+9ZbVY7ZXJjZHz8/Pxzz//6CQ6ubm5KCgoMGlb/v7+8Pf3N2rdy5cvo1OnToiKisKyZcu0khwAiI2NxaxZs5CdnY2goCAADxooK5XKSqtSA6zb+4q/yq3L1hd5Q3jeiYjMZ/I4On379sWQIUOwbt06/P333/j777+xbt06DB06FPHx8daIEVeuXEHHjh0REhKC999/H//++y9ycnK02t7ExcUhIiICAwYMQHp6OrZu3YoJEyZg+PDhTpW52uvN2t7xfSMiu2ajZ105ApNLdD755BNMmDABL7/8Mu7fv/9gI25uGDp0KObNmyd5gMCDkpnz58/j/PnzqFOnjtaykpo3V1dXbNq0CQkJCWjbti28vLzQv39/TfdzZ6GvRImlAfLHUh1ydPx8V8AGbXQchcmJTpUqVbB48WLMmzcPf/31F4QQaNCgAby9va0RHwBg8ODBGDx4cIXr1a1bFz///LPV4iAiIukwuTGe4v8mS7fhjMweMNDb2xvNmzeXMhaHwCoQshaW6hARmc7kRKdTp07ldtfetm2bRQEREZFjY8JuBlZdmc3kRKdly5Zaf9+/fx9Hjx7FyZMnMWjQIKniIj14cSAiueN1zDyVPTKyIzE50fnggw/0zk9KSsKtW7csDoj0M+XiULpBMi8qjoXVV0REpjG5e7khL7/8MpYuXSrV5qgUc25sW64c4w3RBHyviKyP3zMLsHu52cxujFzWvn37NCMYExERkcScNFGxlMmJTtlBAYUQyM7OxuHDh/HOO+9IFhhRZWJvOSIix2RyouPj46PV68rFxQWNGzfGjBkzEBcXJ2lwcsObJRERWQMbI5vP5ERn+fLlVgiDyLas+YwyqbFBMkml5LMkl8++U2P3crOZ3Bi5Xr16uHbtms78mzdvol69epIEJWe8AREREdkPk0t0Ll68CJVKpTO/sLAQly9fliQoubJGksPEiYiIWHVlPqMTnR9//FHz/y1btsDX11fzt0qlwtatWxEWFiZpcESViUX4RNbDH20WYtWV2YxOdPr06QMAUCgUOiMgu7u7IywsDPPnz5c0OLmS6obJCwMRWVNlXWN4LbMcS3TMZ3Sio1arAQDh4eE4dOgQ/P39rRaUI2DpABERke2Z3EYnIyPDGnFQGfwFRIbws0FSqKwfYvy8SoRVV2YzKtFZuHAhXn31VXh6emLhwoXlrjtmzBhJAnMELNUhMh6fz0ZUDiY6ZjMq0fnggw/w0ksvwdPT0+BDPYEH7XeY6PzH3CSHF3rz2Mv4MkxwLWMv59GZWOszy/NI9sCoRKd0dRWrrsielb5JVtYNs/T+ys5nwvOfsucG4I3Qlvj5lBc2RjafyQMGzpgxA3fu3NGZf/fuXcyYMUOSoJwZL/wV03dxLj2va3CLSrmAl/eEeJ5H/fSdG31JD2/AlYvvtwzw6eVmMznRmT59Om7duqUz/86dO5g+fbokQTkK3uykVfomWfb/pZW9YVoj8dF3bvUlPlJ/BuT4mSrv/dd3PssuK7ueHFRWsm2q8r43RI7K5ERHCKH1UM8Sx44dQ40aNSQJylnJ8SZmjPJuYMasX95rjFm3vJIXc5S3rYqOzVHPMaB7c5fiZq/vxmwoKTK0rjmxS8XUz37pWKSOp7ITG0f+rNuCQghJJmdkdPdyPz8/KBQKKBQKNGrUSCvZUalUuHXrFkaOHGmVIB2dI10QyraLKX3DMeY4pfq1KXX7A2OSm4qOT+7nubxzqK/0pTLiMWd5eedL3zGWV2JoDH3fiZLPZ0X7slY7M5bmyBB7XZnN6EQnOTkZQgi88sormD59utYjIDw8PBAWFobY2FirBOlI5H6zK4+xv1b1/S11YlLZSU7p/1d0I7VGHJYydEMteyzG3JxtzZRSFEtLF409J4ZiMvXp4aY2tq+stmqWJoNyYc65J9szOtEpeexDeHg42rRpA3d3d6sF5Uic+ctgTJsLQ3/bSumLtqU3EXs5Jn1MucEaKn0o2Y5cmVIdauz2zPm+G/M5Kn2uzPlBYU36SqyM/Q7pe709KZtY6lteLO4DuGD1WNjrynwmj4zcoUMHzf/v3r2L+/fvay338fGxPCo7Ys9fQlsx5iJmjzfAsjcMc3pMWXJctnpPDP0KLa90zZRtkvUbS5eXlNlTbzVT929M1ba+0iJj1zfmx4q+asWy27H1+wqAVVcWMDnRuXPnDiZNmoRvv/0W165d01muUqkkCcxemXIzcDTG3hjt4qJQSkW/yvStp2+ZLVnyeStbGmBpGxP6jz28N7b+bFoSgzmfTamSyvKqD41Jcir7fWeJjvlM7nU1ceJEbNu2DYsXL4ZSqcQXX3yB6dOnIzg4GCtXrrRGjDbRt1Ezzf+t/WvN3hlTtG7v7015bS3KXtRKT3Jn6LgrKrUqncTa+kZu7xzhc2INUlTjSZHMlP6eG/pu213pDUnK5ETnp59+wuLFi/Hss8/Czc0N7du3x9tvv43Zs2fj66+/tkaMNuOMH359F4XS8x1Neccl55FjrfnZlet7QvapbDJtjWuOQ3xmhUSTEzI50bl+/TrCw8MBPGiPc/36dQBAu3bt8Pvvv0sbHdmEQ1wUJGCv70NF1W/WbKxqr+8JOR6WJGorqbqydHJGJrfRqVevHi5evIjQ0FBERETg22+/RevWrfHTTz+hevXqVgjRPtlD3byUnP0GVlHyYE+kaIRpCns7fpIXfW1g2OCdKpPJJTpDhgzBsWMPPqSTJ0/WtNUZO3YsJk6cKHmAZRUWFqJly5ZQKBQ4evSo1rLMzEz06tUL3t7e8Pf3x5gxY1BUVGT1mIisyZhu3fr+lrJ9A5G5Sj6/pauonKFaXHKsujKbyYnO2LFjMWbMGABAp06d8Oeff+Kbb77BkSNH8Prrr0seYFmTJk1CcHCwznyVSoWePXvi9u3b2L17N9asWYP169dj/PjxVovFHr+s9hKHXNl7KV3pRsI81yQ3hhJ0ffPt/btoC6y2Mo/JiU5ZdevWRXx8PGrUqIFXXnlFipgM+uWXX5CSkoL3339fZ1lKSgr++OMPfPXVV2jVqhU6d+6M+fPn4/PPP0d+fr5V4yphzo3HFr+8+UvdMDm8L/p6iRE5Gn6uSSoWJzolrl+/jhUrVki1OR3//PMPhg8fjlWrVqFKlSo6y/ft24fIyEit0p6uXbuisLAQaWlpBrdbWFiI/Px8rckSlnZPNuZ1po73UDYuY9Yn+8ZzR+RkhJBmckImN0a2BSEEBg8ejJEjRyI6OhoXL17UWScnJwcBAQFa8/z8/ODh4YGcnByD254zZw6mT59uUXzGNGStaPRSU4tuzR34zpTtEBGRfeCAgeazaaKTlJRUYZJx6NAh7N27F/n5+Zg8eXK565Z+onoJIYTe+SUmT56McePGaf7Oz89HSEhIBZGbTl/PA2NeY8n+iIhspewPLl6TyFZsmuiMHj0aL7zwQrnrhIWFYebMmdi/fz+USqXWsujoaLz00ktYsWIFAgMDceDAAa3lN27cwP3793VKekpTKpU627UWNiQlIiKzSNFriiU65YuPjy93+c2bN03eub+/P/z9/Stcb+HChZg5c6bm7ytXrqBr165Yu3YtYmJiAACxsbGYNWsWsrOzERQUBOBBA2WlUomoqCiTY7MW9iQgSzBJJjkxpySb9FOoH0yWbsMZGZ3o+Pr6Vrh84MCBFgekT926dbX+rlq1KgCgfv36qFOnDgAgLi4OERERGDBgAObNm4fr169jwoQJGD58uE2fqK7vYXFMdsgU1hoIkKgyMMmRCEt0zGZ0orNs2TJrxmExV1dXbNq0CQkJCWjbti28vLzQv39/vV3RK5MxDY+JjMXPDhGRaWTR66qssLAwCD3d5OrWrYuff/7ZBhERERFZD3tdmU+WiQ4REZFTkWIcHCcdR0eyAQOJiIiI7A1LdIiIiOwcq67Mx0SHiIjI3rHXldlYdUVEREQOiyU6REREdo5VV+ZjokNERGTv2OvKbKy6IiIiIofFEh0iIiI7x6or8zHRISIisnfsdWU2JjpERER2jiU65mMbHSIiInJYLNEhIiKyd2rxYLJ0G06IiQ4REZG9Yxsds7HqioiIiBwWS3SIiIjsnAISNEaWJBL5YaJDRERk7zgystlYdUVEREQOi4kOERGRnSsZR8fSyVSLFy9GeHg4PD09ERUVhV27dhlc9/vvv0eXLl3w0EMPwcfHB7GxsdiyZYsFRy0NJjpERET2Tkg0mWDt2rVITEzElClTkJ6ejvbt26N79+7IzMzUu/7vv/+OLl26YPPmzUhLS0OnTp3Qq1cvpKenm368ElII4aSVdgbk5+fD19cXHdEbbgp3W4dDRER2rFjcxw78gLy8PPj4+Ei+/ZJ7UrtOSXBz87RoW8XF97B7e5LRscbExOCRRx7BkiVLNPOaNm2KPn36YM6cOUbt8+GHH0a/fv0wdepUs+O2FEt0iIiI7JxCCEkm4EHyVHoqLCzU2V9RURHS0tIQFxenNT8uLg579+41Kma1Wo2CggLUqFHD8jfAAkx0iIiI7J1aoglASEgIfH19NZO+0pmrV69CpVIhICBAa35AQABycnKMCnn+/Pm4ffs2nn/+eVOPVlLsXk5ERGTnSpfIWLINAMjKytKqulIqlYZfo9AefUcIoTNPn2+++QZJSUn44YcfUKtWLTMjlgYTHSIiIifi4+NTYRsdf39/uLq66pTe5Obm6pTylLV27VoMHToU3333HTp37mxxvJZi1RUREZG9q+ReVx4eHoiKikJqaqrW/NTUVLRp08bg67755hsMHjwYq1evRs+ePY3foRWxRIeIiMje2WBk5HHjxmHAgAGIjo5GbGwsPvvsM2RmZmLkyJEAgMmTJ+Py5ctYuXIlgAdJzsCBA/Hhhx/iscce05QGeXl5wdfX17LYLcBEh4iIiHT069cP165dw4wZM5CdnY3IyEhs3rwZoaGhAIDs7GytMXU+/fRTFBcXY9SoURg1apRm/qBBg7B8+fLKDl+DiQ4REZGdM3dk47LbMFVCQgISEhL0LiubvOzYscP0HVQCJjpERET2jg/1NJusGiNv2rQJMTEx8PLygr+/P+Lj47WWZ2ZmolevXvD29oa/vz/GjBmDoqIiG0VLREREtiabEp3169dj+PDhmD17Np544gkIIXDixAnNcpVKhZ49e+Khhx7C7t27ce3aNQwaNAhCCCxatMiGkRMREVlGoX4wWboNZySLRKe4uBivv/465s2bh6FDh2rmN27cWPP/lJQU/PHHH8jKykJwcDCAB6MyDh48GLNmzbLKM0iIiIgqBauuzCaLqqsjR47g8uXLcHFxQatWrRAUFITu3bvj1KlTmnX27duHyMhITZIDAF27dkVhYSHS0tIMbruwsFDnuR9ERETkGGSR6Fy4cAEAkJSUhLfffhs///wz/Pz80KFDB1y/fh0AkJOTozNao5+fHzw8PMp9LsecOXO0nvkREhJivQMhIiIyRyUPGOhIbJroJCUlQaFQlDsdPnwYavWDisUpU6bgmWeeQVRUFJYtWwaFQoHvvvtOsz19z9+o6LkckydPRl5enmbKysqS/kCJiIgsIOXTy52NTdvojB49Gi+88EK564SFhaGgoAAAEBERoZmvVCpRr149zWBFgYGBOHDggNZrb9y4gfv375f7XA6lUlnuA82IiIhsjm10zGbTRMff3x/+/v4VrhcVFQWlUokzZ86gXbt2AID79+/j4sWLmhEaY2NjMWvWLGRnZyMoKAjAgwbKSqUSUVFR1jsIIiIisluy6HXl4+ODkSNHYtq0aQgJCUFoaCjmzZsHAHjuuecAAHFxcYiIiMCAAQMwb948XL9+HRMmTMDw4cPZ44qIiORNALC0e7hzFujII9EBgHnz5sHNzQ0DBgzA3bt3ERMTg23btsHPzw8A4Orqik2bNiEhIQFt27aFl5cX+vfvj/fff9/GkRMREVlGijY2bKNj59zd3fH++++Xm7jUrVsXP//8cyVGRURERPZMNokOERGR0xKQoDGyJJHIDhMdIiIie8deV2aTxYCBREREROZgiQ4REZG9UwMwPPat8dtwQkx0iIiI7Bx7XZmPiQ4REZG9Yxsds7GNDhERETkslugQERHZO5bomI2JDhERkb1jomM2Vl0RERGRw2KJDhERkb1j93KzMdEhIiKyc+xebj5WXREREZHDYokOERGRvWNjZLMx0SEiIrJ3agEoLExU1M6Z6LDqioiIiBwWS3SIiIjsHauuzMZEh4iIyO5JkOiAiQ4RERHZI5bomI1tdIiIiMhhsUSHiIjI3qkFLK56ctJeV0x0iIiI7J1QP5gs3YYTYtUVEREROSyW6BAREdk7NkY2GxMdIiIie8c2OmZj1RURERE5LJboEBER2TtWXZmNiQ4REZG9E5Ag0ZEkEtlh1RURERE5LJboEBER2TtWXZlNNiU6Z8+eRe/eveHv7w8fHx+0bdsW27dv11onMzMTvXr1gre3N/z9/TFmzBgUFRXZKGIiIiKJqNXSTE5INolOz549UVxcjG3btiEtLQ0tW7bEU089hZycHACASqVCz549cfv2bezevRtr1qzB+vXrMX78eBtHTkREZKGSEh1LJycki0Tn6tWrOH/+PN588000b94cDRs2xLvvvos7d+7g1KlTAICUlBT88ccf+Oqrr9CqVSt07twZ8+fPx+eff478/HwbHwERERHZgiwSnZo1a6Jp06ZYuXIlbt++jeLiYnz66acICAhAVFQUAGDfvn2IjIxEcHCw5nVdu3ZFYWEh0tLSDG67sLAQ+fn5WhMREZFdYYmO2WTRGFmhUCA1NRW9e/dGtWrV4OLigoCAAPz666+oXr06ACAnJwcBAQFar/Pz84OHh4emekufOXPmYPr06dYMn4iIyDIcGdlsNi3RSUpKgkKhKHc6fPgwhBBISEhArVq1sGvXLhw8eBC9e/fGU089hezsbM32FAqFzj6EEHrnl5g8eTLy8vI0U1ZWllWOlYiIiCqfTUt0Ro8ejRdeeKHcdcLCwrBt2zb8/PPPuHHjBnx8fAAAixcvRmpqKlasWIE333wTgYGBOHDggNZrb9y4gfv37+uU9JSmVCqhVCotPxgiIiIrEUINISzrNWXp6+XKpomOv78//P39K1zvzp07AAAXF+0CKBcXF6j/r7tcbGwsZs2ahezsbAQFBQF40EBZqVRq2vEQERHJkhCWVz05aRsdWTRGjo2NhZ+fHwYNGoRjx47h7NmzmDhxIjIyMtCzZ08AQFxcHCIiIjBgwACkp6dj69atmDBhAoYPH64pBSIiIiLnIotEx9/fH7/++itu3bqFJ554AtHR0di9ezd++OEHtGjRAgDg6uqKTZs2wdPTE23btsXzzz+PPn364P3337dx9ERERBZiryuzyaLXFQBER0djy5Yt5a5Tt25d/Pzzz5UUERERUSVRqwGFhW1snLSNjixKdIiIiIjMIZsSHSIiIqclJBhHh1VXREREZI+EWg1hYdUVu5cTERGRfWKJjtnYRoeIiIgcFkt0iIiI7J1aAAqW6JiDiQ4REZG9EwKApd3LnTPRYdUVEREROSyW6BAREdk5oRYQFlZdCZboEBERkV0SamkmEy1evBjh4eHw9PREVFQUdu3aVe76O3fuRFRUFDw9PVGvXj188skn5h6xZJjoEBERkY61a9ciMTERU6ZMQXp6Otq3b4/u3bsjMzNT7/oZGRno0aMH2rdvj/T0dLz11lsYM2YM1q9fX8mRa1MIZy3LMiA/Px++vr7oiN5wU7jbOhwiIrJjxeI+duAH5OXlwcfHR/Lta+5Jir4W35OKxX3sEBuMjjUmJgaPPPIIlixZopnXtGlT9OnTB3PmzNFZ/4033sCPP/6I06dPa+aNHDkSx44dw759+yyK3RIs0SEiIrJ3lVx1VVRUhLS0NMTFxWnNj4uLw969e/W+Zt++fTrrd+3aFYcPH8b9+/dNP2aJsDFyGSUFXMW4b/EglERE5NiK8eAGbu3KESnuSSWx5ufna81XKpVQKpVa865evQqVSoWAgACt+QEBAcjJydG7/ZycHL3rFxcX4+rVqwgKCrLsAMzERKeMa9euAQB2Y7ONIyEiIrkoKCiAr6+v5Nv18PBAYGAgdudIc0+qWrUqQkJCtOZNmzYNSUlJetdXKBRafwshdOZVtL6++ZWJiU4ZNWrUAABkZmZa5UNrS/n5+QgJCUFWVpZV6pJticcmTzw2eXLkYwNMOz4hBAoKChAcHGyVWDw9PZGRkYGioiJJtqcvUSlbmgMA/v7+cHV11Sm9yc3N1Sm1KREYGKh3fTc3N9SsWdPCyM3HRKcMF5cHzZZ8fX0d8gsMAD4+Pjw2GeKxyROPTb6MPT5r/yj29PSEp6enVfdRloeHB6KiopCamoq+fftq5qempqJ37956XxMbG4uffvpJa15KSgqio6Ph7m67zj1sjExEREQ6xo0bhy+++AJLly7F6dOnMXbsWGRmZmLkyJEAgMmTJ2PgwIGa9UeOHIlLly5h3LhxOH36NJYuXYovv/wSEyZMsNUhAGCJDhEREenRr18/XLt2DTNmzEB2djYiIyOxefNmhIaGAgCys7O1xtQJDw/H5s2bMXbsWHz88ccIDg7GwoUL8cwzz9jqEAAw0dGhVCoxbdo0vXWWcsdjkycemzzx2OTL0Y/PFAkJCUhISNC7bPny5TrzOnTogCNHjlg5KtNwwEAiIiJyWGyjQ0RERA6LiQ4RERE5LCY6RERE5LCY6BAREZHDYqJTyuLFixEeHg5PT09ERUVh165dtg7JZElJSVAoFFpTYGCgZrkQAklJSQgODoaXlxc6duyIU6dO2TBiw37//Xf06tULwcHBUCgU2Lhxo9ZyY46lsLAQr732Gvz9/eHt7Y2nn34af//9dyUehX4VHdvgwYN1zuNjjz2mtY69HtucOXPw6KOPolq1aqhVqxb69OmDM2fOaK0j13NnzLHJ9dwtWbIEzZs31wySFxsbi19++UWzXK7nDKj42OR6zsg4THT+z9q1a5GYmIgpU6YgPT0d7du3R/fu3bXGCJCLhx9+GNnZ2ZrpxIkTmmVz587FggUL8NFHH+HQoUMIDAxEly5dUFBQYMOI9bt9+zZatGiBjz76SO9yY44lMTERGzZswJo1a7B7927cunULTz31FFQqVWUdhl4VHRsAdOvWTes8bt6s/awbez22nTt3YtSoUdi/fz9SU1NRXFyMuLg43L59W7OOXM+dMccGyPPc1alTB++++y4OHz6Mw4cP44knnkDv3r01yYxczxlQ8bEB8jxnZCRBQgghWrduLUaOHKk1r0mTJuLNN9+0UUTmmTZtmmjRooXeZWq1WgQGBop3331XM+/evXvC19dXfPLJJ5UUoXkAiA0bNmj+NuZYbt68Kdzd3cWaNWs061y+fFm4uLiIX3/9tdJir0jZYxNCiEGDBonevXsbfI1cjk0IIXJzcwUAsXPnTiGEY527sscmhGOdOz8/P/HFF1841DkrUXJsQjjWOSNdLNEBUFRUhLS0NMTFxWnNj4uLw969e20UlfnOnTuH4OBghIeH44UXXsCFCxcAABkZGcjJydE6TqVSiQ4dOsjuOI05lrS0NNy/f19rneDgYERGRsrieHfs2IFatWqhUaNGGD58OHJzczXL5HRseXl5AP57YK4jnbuyx1ZC7udOpVJhzZo1uH37NmJjYx3qnJU9thJyP2dkGEdGBnD16lWoVCqdJ7IGBAToPInV3sXExGDlypVo1KgR/vnnH8ycORNt2rTBqVOnNMei7zgvXbpki3DNZsyx5OTkwMPDA35+fjrr2Pt57d69O5577jmEhoYiIyMD77zzDp544gmkpaVBqVTK5tiEEBg3bhzatWuHyMhIAI5z7vQdGyDvc3fixAnExsbi3r17qFq1KjZs2ICIiAjNzVzO58zQsQHyPmdUMSY6pZR9dL3Q8zh7e9e9e3fN/5s1a4bY2FjUr18fK1as0DSuc4TjLGHOscjhePv166f5f2RkJKKjoxEaGopNmzYhPj7e4Ovs7dhGjx6N48ePY/fu3TrL5H7uDB2bnM9d48aNcfToUdy8eRPr16/HoEGDsHPnTs1yOZ8zQ8cWEREh63NGFWPVFQB/f3+4urrqZOa5ubk6v2DkxtvbG82aNcO5c+c0va8c4TiNOZbAwEAUFRXhxo0bBteRi6CgIISGhuLcuXMA5HFsr732Gn788Uds374dderU0cx3hHNn6Nj0kdO58/DwQIMGDRAdHY05c+agRYsW+PDDDx3inBk6Nn3kdM6oYkx08OALEBUVhdTUVK35qampaNOmjY2ikkZhYSFOnz6NoKAghIeHIzAwUOs4i4qKsHPnTtkdpzHHEhUVBXd3d611srOzcfLkSdkd77Vr15CVlYWgoCAA9n1sQgiMHj0a33//PbZt24bw8HCt5XI+dxUdmz5yOndlCSFQWFgo63NmSMmx6SPnc0Z6VHrzZzu1Zs0a4e7uLr788kvxxx9/iMTEROHt7S0uXrxo69BMMn78eLFjxw5x4cIFsX//fvHUU0+JatWqaY7j3XffFb6+vuL7778XJ06cEC+++KIICgoS+fn5No5cV0FBgUhPTxfp6ekCgFiwYIFIT08Xly5dEkIYdywjR44UderUEb/99ps4cuSIeOKJJ0SLFi1EcXGxrQ5LCFH+sRUUFIjx48eLvXv3ioyMDLF9+3YRGxsrateuLYtj+3//7/8JX19fsWPHDpGdna2Z7ty5o1lHrueuomOT87mbPHmy+P3330VGRoY4fvy4eOutt4SLi4tISUkRQsj3nAlR/rHJ+ZyRcZjolPLxxx+L0NBQ4eHhIR555BGtLqNy0a9fPxEUFCTc3d1FcHCwiI+PF6dOndIsV6vVYtq0aSIwMFAolUrx+OOPixMnTtgwYsO2b98uAOhMgwYNEkIYdyx3794Vo0ePFjVq1BBeXl7iqaeeEpmZmTY4Gm3lHdudO3dEXFyceOihh4S7u7uoW7euGDRokE7c9nps+o4LgFi2bJlmHbmeu4qOTc7n7pVXXtFc/x566CHx5JNPapIcIeR7zoQo/9jkfM7IOAohhKi88iMiIiKiysM2OkREROSwmOgQERGRw2KiQ0RERA6LiQ4RERE5LCY6RERE5LCY6BAREZHDYqJDREREDouJDpHELl68CIVCgaNHj1pl+wqFAhs3bjT79Tt27IBCoYBCoUCfPn3KXbdjx45ITEw0e19UvpLzUL16dVuHQuSwmOiQQxk8eHCFN29rCwkJQXZ2NiIjIwH8l1jcvHnTpnGVdebMGSxfvtzWYTgFQ5/L7OxsJCcnV3o8RM6EiQ6RxFxdXREYGAg3Nzdbh1KuWrVq2UVJwv37920dgs0EBgbC19fX1mEQOTQmOuRUdu7cidatW0OpVCIoKAhvvvkmiouLNcs7duyIMWPGYNKkSahRowYCAwORlJSktY0///wT7dq1g6enJyIiIvDbb79pVSeVrrq6ePEiOnXqBADw8/ODQqHA4MGDAQBhYWE6v+Zbtmyptb9z587h8ccf1+yr9NOTS1y+fBn9+vWDn58fatasid69e+PixYsmvze3b9/GwIEDUbVqVQQFBWH+/Pk66xQVFWHSpEmoXbs2vL29ERMTgx07dmit8/nnnyMkJARVqlRB3759sWDBAq2EKikpCS1btsTSpUtRr149KJVKCCGQl5eHV199FbVq1YKPjw+eeOIJHDt2TGvbP/30E6KiouDp6Yl69eph+vTpWucvKSkJdevWhVKpRHBwMMaMGWPUsVd0XNeuXcOLL76IOnXqoEqVKmjWrBm++eYbrW2sW7cOzZo1g5eXF2rWrInOnTvj9u3bSEpKwooVK/DDDz9oqqrKvmdEZD32/ZOTSEKXL19Gjx49MHjwYKxcuRJ//vknhg8fDk9PT63kYsWKFRg3bhwOHDiAffv2YfDgwWjbti26dOkCtVqNPn36oG7dujhw4AAKCgowfvx4g/sMCQnB+vXr8cwzz+DMmTPw8fGBl5eXUfGq1WrEx8fD398f+/fvR35+vk57mTt37qBTp05o3749fv/9d7i5uWHmzJno1q0bjh8/Dg8PD6Pfn4kTJ2L79u3YsGEDAgMD8dZbbyEtLQ0tW7bUrDNkyBBcvHgRa9asQXBwMDZs2IBu3brhxIkTaNiwIfbs2YORI0fivffew9NPP43ffvsN77zzjs6+zp8/j2+//Rbr16+Hq6srAKBnz56oUaMGNm/eDF9fX3z66ad48skncfbsWdSoUQNbtmzByy+/jIULF6J9+/b466+/8OqrrwIApk2bhnXr1uGDDz7AmjVr8PDDDyMnJ0cnUTKkouO6d+8eoqKi8MYbb8DHxwebNm3CgAEDUK9ePcTExCA7Oxsvvvgi5s6di759+6KgoAC7du2CEAITJkzA6dOnkZ+fj2XLlgEAatSoYfR5ISIL2faZokTSGjRokOjdu7feZW+99ZZo3LixUKvVmnkff/yxqFq1qlCpVEIIITp06CDatWun9bpHH31UvPHGG0IIIX755Rfh5uYmsrOzNctTU1MFALFhwwYhhBAZGRkCgEhPTxdC/Pek8hs3bmhtNzQ0VHzwwQda81q0aCGmTZsmhBBiy5YtwtXVVWRlZWmW//LLL1r7+vLLL3WOqbCwUHh5eYktW7bofR/0xVNQUCA8PDzEmjVrNPOuXbsmvLy8xOuvvy6EEOL8+fNCoVCIy5cva23vySefFJMnTxZCCNGvXz/Rs2dPreUvvfSS8PX11fw9bdo04e7uLnJzczXztm7dKnx8fMS9e/e0Xlu/fn3x6aefCiGEaN++vZg9e7bW8lWrVomgoCAhhBDz588XjRo1EkVFRXqP2xBjjkufHj16iPHjxwshhEhLSxMAxMWLF/WuW97nctmyZVrvDxFJiyU65DROnz6N2NhYKBQKzby2bdvi1q1b+Pvvv1G3bl0AQPPmzbVeFxQUhNzcXAAPGvCGhIQgMDBQs7x169ZWi7du3bqoU6eOZl5sbKzWOmlpaTh//jyqVaumNf/evXv466+/jN7XX3/9haKiIq3t16hRA40bN9b8feTIEQgh0KhRI63XFhYWombNmgAevD99+/bVWt66dWv8/PPPWvNCQ0Px0EMPaR3HrVu3NNspcffuXc1xpKWl4dChQ5g1a5ZmuUqlwr1793Dnzh0899xzSE5ORr169dCtWzf06NEDvXr1qrCtlDHHpVKp8O6772Lt2rW4fPkyCgsLUVhYCG9vbwBAixYt8OSTT6JZs2bo2rUr4uLi8Oyzz8LPz6/cfROR9THRIachhNBKckrmAdCa7+7urrWOQqGAWq02uA1zubi4aPZfonTD3LLLysYJPKjeioqKwtdff62zbulEoiL69lWWWq2Gq6sr0tLSNNVNJapWrarZjqH3uLSSBKH0toOCgvS2XSlp36NWqzF9+nTEx8frrOPp6YmQkBCcOXMGqamp+O2335CQkIB58+Zh586dOufU1OOaP38+PvjgAyQnJ6NZs2bw9vZGYmIiioqKADxogJ6amoq9e/ciJSUFixYtwpQpU3DgwAGEh4cb3DcRWR8THXIaERERWL9+vdbNeO/evahWrRpq165t1DaaNGmCzMxM/PPPPwgICAAAHDp0qNzXlLSTUalUWvMfeughZGdna/7Oz89HRkaGVryZmZm4cuUKgoODAQD79u3T2sYjjzyCtWvXahrwmqtBgwZwd3fH/v37NSVbN27cwNmzZ9GhQwcAQKtWraBSqZCbm4v27dvr3U6TJk1w8OBBrXmHDx+ucP+PPPIIcnJy4ObmhrCwMIPrnDlzBg0aNDC4HS8vLzz99NN4+umnMWrUKDRp0gQnTpzAI488YvA1xhzXrl270Lt3b7z88ssAHiRH586dQ9OmTTXrKBQKtG3bFm3btsXUqVMRGhqKDRs2YNy4cfDw8NA5/0RUOdjrihxOXl4ejh49qjVlZmYiISEBWVlZeO211/Dnn3/ihx9+wLRp0zBu3Di4uBj3VejSpQvq16+PQYMG4fjx49izZw+mTJkCQLe0pURoaCgUCgV+/vln/Pvvv7h16xYA4IknnsCqVauwa9cunDx5EoMGDdIqUejcuTMaN26MgQMH4tixY9i1a5dmXyVeeukl+Pv7o3fv3ti1axcyMjKwc+dOvP766/j777+Nfs+qVq2KoUOHYuLEidi6dStOnjyJwYMHa70vjRo1wksvvYSBAwfi+++/R0ZGBg4dOoT33nsPmzdvBgC89tpr2Lx5MxYsWIBz587h008/xS+//FJhKVjnzp0RGxuLPn36YMuWLbh48SL27t2Lt99+W5MoTZ06FStXrkRSUhJOnTqF06dPY+3atXj77bcBAMuXL8eXX36JkydP4sKFC1i1ahW8vLwQGhpa7r6NOa4GDRpoSmxOnz6NESNGICcnR7ONAwcOYPbs2Th8+DAyMzPx/fff499//9UkQmFhYTh+/DjOnDmDq1evOnWXeqJKZ6O2QURWMWjQIAFAZxo0aJAQQogdO3aIRx99VHh4eIjAwEDxxhtviPv372te36FDB03j2xK9e/fWvF4IIU6fPi3atm0rPDw8RJMmTcRPP/0kAIhff/1VCKHbGFkIIWbMmCECAwOFQqHQbCsvL088//zzwsfHR4SEhIjly5drNUYWQogzZ86Idu3aCQ8PD9GoUSPx66+/ajVGFkKI7OxsMXDgQOHv7y+USqWoV6+eGD58uMjLy9P7HhlqHF1QUCBefvllUaVKFREQECDmzp2r834UFRWJqVOnirCwMOHu7i4CAwNF3759xfHjxzXrfPbZZ6J27drCy8tL9OnTR8ycOVMEBgZqlk+bNk20aNFCJ678/Hzx2muvieDgYOHu7i5CQkLESy+9JDIzMzXr/Prrr6JNmzbCy8tL+Pj4iNatW4vPPvtMCCHEhg0bRExMjPDx8RHe3t7iscceE7/99pve96Csio7r2rVronfv3qJq1aqiVq1a4u233xYDBw7UNDD+448/RNeuXcVDDz0klEqlaNSokVi0aJFm+7m5uaJLly6iatWqAoDYvn27ZhkbIxNZl0IIIyrnicigPXv2oF27djh//jzq169v63AqtGPHDnTq1Ak3btyolAEDhw8fjj///BO7du2y+r7kaPny5UhMTLS7kbOJHAXb6BCZaMOGDahatSoaNmyI8+fP4/XXX0fbtm1lkeSUVqdOHfTq1Utn4DtLvf/+++jSpQu8vb3xyy+/YMWKFVi8eLGk+3AUVatWRXFxMTw9PW0dCpHDYqJDZKKCggJMmjQJWVlZ8Pf3R+fOnfWOImyvYmJicO7cOQD/9SqS0sGDBzF37lwUFBSgXr16WLhwIYYNGyb5foy1a9cudO/e3eDykjZTtlDy4Neyvb2ISDqsuiIih3b37l1cvnzZ4PLyenERkfwx0SEiIiKHxe7lRERE5LCY6BAREZHDYqJDREREDouJDhERETksJjpERETksJjoEBERkcNiokNEREQOi4kOEREROaz/D0UnyEI0MGo3AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "(sst > 15).isel(time=0).plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ":::{admonition} 📝 Check your understanding\n", ":class: tip\n", "\n", "Create a plot that shows where sst is above 10 degrees.\n", "\n", ":::" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Masking values with `xr.where()`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Another common kind of data manipulation is to want to give data cells new values based on their old values. For that we will use [`xr.where()`](https://xarray.pydata.org/en/stable/generated/xarray.where.html).\n", "\n", "`xr.where()` takes at least three arguments:\n", "\n", "> `xr.where(condition, true, false)`\n", "\n", "- `condition` should be any type of boolean statement like above that returns a bunch of True/False\n", "- `true` is what xarray should put into any place that has a True value.\n", "\n", "Optionally, you can also add a third argument describing what would happen should happen to the places where the `condition` array is False.\n", "\n", "**Note** better to go with the method version of .where ? https://xarray.pydata.org/en/v2022.03.0/generated/xarray.Dataset.where.html \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this example, we see that anywhere that `sst` is greater than 20, xarray will put the word \"warm\". All other places it will put the word \"cold\"." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'sst' (time: 1, lat: 720, lon: 1440)>\n",
       "array([[['cold', 'cold', 'cold', ..., 'cold', 'cold', 'cold'],\n",
       "        ['cold', 'cold', 'cold', ..., 'cold', 'cold', 'cold'],\n",
       "        ['cold', 'cold', 'cold', ..., 'cold', 'cold', 'cold'],\n",
       "        ...,\n",
       "        ['cold', 'cold', 'cold', ..., 'cold', 'cold', 'cold'],\n",
       "        ['cold', 'cold', 'cold', ..., 'cold', 'cold', 'cold'],\n",
       "        ['cold', 'cold', 'cold', ..., 'cold', 'cold', 'cold']]],\n",
       "      dtype='<U4')\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
       "  * lon      (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n",
       "  * time     (time) datetime64[ns] 1982-10-07T12:00:00
" ], "text/plain": [ "\n", "array([[['cold', 'cold', 'cold', ..., 'cold', 'cold', 'cold'],\n", " ['cold', 'cold', 'cold', ..., 'cold', 'cold', 'cold'],\n", " ['cold', 'cold', 'cold', ..., 'cold', 'cold', 'cold'],\n", " ...,\n", " ['cold', 'cold', 'cold', ..., 'cold', 'cold', 'cold'],\n", " ['cold', 'cold', 'cold', ..., 'cold', 'cold', 'cold'],\n", " ['cold', 'cold', 'cold', ..., 'cold', 'cold', 'cold']]],\n", " dtype=' 20, \"warm\", \"cold\")" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'sst' (time: 1, lat: 720, lon: 1440)>\n",
       "array([[[nan, nan, nan, ..., nan, nan, nan],\n",
       "        [nan, nan, nan, ..., nan, nan, nan],\n",
       "        [nan, nan, nan, ..., nan, nan, nan],\n",
       "        ...,\n",
       "        [nan, nan, nan, ..., nan, nan, nan],\n",
       "        [nan, nan, nan, ..., nan, nan, nan],\n",
       "        [nan, nan, nan, ..., nan, nan, nan]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
       "  * lon      (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n",
       "  * time     (time) datetime64[ns] 1982-10-07T12:00:00
" ], "text/plain": [ "\n", "array([[[nan, nan, nan, ..., nan, nan, nan],\n", " [nan, nan, nan, ..., nan, nan, nan],\n", " [nan, nan, nan, ..., nan, nan, nan],\n", " ...,\n", " [nan, nan, nan, ..., nan, nan, nan],\n", " [nan, nan, nan, ..., nan, nan, nan],\n", " [nan, nan, nan, ..., nan, nan, nan]]], dtype=float32)\n", "Coordinates:\n", " * lat (lat) float32 -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n", " * lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.1 359.4 359.6 359.9\n", " * time (time) datetime64[ns] 1982-10-07T12:00:00" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xr.where(sst < 0, np.nan, sst)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that the conditional doesn't have to be data from the original dataset - it could be one of its coordinates, or even a totally different dataset of the same shape." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "masked = xr.where(sst.lat > 60, 0, sst)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAHFCAYAAAA+FskAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebhcRZ0+/p463X375iY3JCwJ0Qio7BHNACK4BB1AlkERtxEHFUEZARUZdWRwNDpKBBzEEYd5+MoPcEEdFxgURFAWHRZFREU2kUUZJQRCkntv3+4+S9Xvjzqfqk/VOX1zk3uT3A71Pk8/3X36LHXOqT711vvZIqWUQkBAQEBAQEDADIfY0g0ICAgICAgICJgMAmkJCAgICAgI6AsE0hIQEBAQEBDQFwikJSAgICAgIKAvEEhLQEBAQEBAQF8gkJaAgICAgICAvkAgLQEBAQEBAQF9gUBaAgICAgICAvoCgbQEBAQEBAQE9AUCaQmYFtx2221Yvnw51q5dW/rt4IMPxsEHH7zZ27S5cMEFF+DYY4/FLrvsgiiKJjzXH//4x3j5y1+OwcFBzJ07F0cffTTuvffe0nrdbhfnnXcelixZgqGhISxYsABHHHEEbrvtNme9u+66C6eeeipe9KIXYc6cOViwYAEOOeQQ3HjjjZNu///93//h9NNPx7Jly7DNNtsgiiJcdtllPdf/yU9+ggMPPBCzZs3Cdttth3e9611YtWrVpI8HAF/60pewxx57YGBgALvssgs+9alPIU1TZ52DDz4YURT1fK1cuRLLly+fcB160T259957ccopp+DAAw/E0NAQoijCzTffXGrfE088gY9//OM48MADsd1222F4eBj77rsvLr74YuR5PunzfOSRR3Dsscdim222wezZs3HooYfi17/+deW63/rWt/CSl7wEzWYTixYtwumnn46xsbEZeayAgC0GFRAwDTjvvPMUAPXoo4+Wfrv33nvVvffeu/kbtZmw++67q7/5m79R7373u9X222+vli1bVrneVVddpaIoUsccc4y65ppr1BVXXKF23313NW/ePPXHP/7RWff4449XQgh11llnqZ/+9KfqO9/5jtp3331VrVZTv/jFL8x6//RP/6T2228/df7556uf/vSn6uqrr1ZHHnmkAqAuv/zySbX/pptuUtttt5065JBD1Nve9jYFQF166aWV6958882qVqup17/+9er6669XX//619VznvMctWTJEtXpdCZ1vM985jMqiiJ15plnqptuukmde+65qtFoqPe85z3Oevfee6+6/fbbnddPf/pTVa/X1cte9jKllFKPP/648/v3v/99BUC9//3vd5ZT/7vsssvUjjvuqI488kh19NFHKwDqpptuKrXxBz/4gVq8eLE666yz1DXXXKOuv/569aEPfUgJIdQJJ5wwqfNctWqVWrRokdp7773V9773PXXNNdeoV7ziFWrOnDnqgQcecNb9+te/rgCok046Sd14443qv/7rv9TcuXPVoYceOuOOFRCwJRFIS8C0YCLSsrUjz3Pzee+99+5JWnbffXe1zz77KCmlWfbYY4+pRqOhjjvuOLOs0+moOI7VP/zDPzjb//Wvf1UA1Ac+8AGz7MknnywdJ8sytc8++6gXvOAFG9z+O++8c0LSsv/++6u99tpLpWlqlt16660KgPrP//zP9R7r6aefVs1mU733ve91ln/2s59VURStl9xedtllCoD6yle+Uvn7o48+qgCo8847r/J3fq7f+c53epKWZ555RiVJUlp+6qmnKgDqz3/+84TtVEqpj3zkI6per6vHHnvMLFu3bp3abrvt1Fve8hazLMsyteOOO6rDDjvM2f4b3/iGAqCuvfbaGXWsgIAtiWAeCpgyli9fjo985CMAYEwkXHb3zUOPPfYYoijCeeedh3POOQc777wzBgcHcfDBB+MPf/gD0jTFxz72MSxatAhz587FG97whkrzw7e//W0j88+ePRuvfe1rcffdd2+OU3YgxPr/RqtXr8aDDz6II444AlEUmeU77bQTlixZgquuusqYHYQQEEJg7ty5zj6Gh4chhECz2TTLdthhh9Kx4jjGvvvui8cff3za2g8Af/nLX3DnnXfi+OOPR61WM8sPOugg7LbbbrjyyivXu4/rrrsOnU4HJ5xwgrP8hBNOgFIKV1111YTbX3LJJZg9ezbe+ta3TqrNPiZ7rvPmzUO9Xi8tf+lLXwpAm9TWhyuvvBKvec1rsNNOO5llw8PDOPbYY/GDH/wAWZYBAO644w488cQTpWvy5je/GbNnz57Udd2cxwoI2JIIpCVgyjjppJPw/ve/HwDw/e9/H7fffjtuv/12/M3f/M2E2335y1/Grbfeii9/+cv4yle+ggceeABHH300TjzxRDz11FP4//6//w/nnnsufvKTn+Ckk05ytj377LPxtre9DXvttRf++7//G1/72tcwOjqKV77ylbjvvvvW2+Ysyyb1UtNUBD1JEgDAwMBA6beBgQGMj4/j4YcfBgDU63WccsopuPzyy3HVVVdhZGQEjz32GN7znvdg7ty5eM973rPec/v5z3+Ovffee1raTvj9738PANhnn31Kv+2zzz7m98ns40UvepGzfMcdd8R222034T4eeugh/PznP8ff//3fY/bs2RvS9GnDjTfeiFqtht12281Z7vsytdttPPzwwz2vVbvdxiOPPAKg93Wt1+vYY489Stdkcx4rIGCmobb+VQICJsZzn/tcPO95zwMALF26FDvvvPOktttmm21w1VVXmdnv008/jdNPPx177LEH/ud//ses98ADD+CCCy7AyMgIhoeH8fjjj+OTn/wkTjvtNPzHf/yHWe/QQw/Frrvuik996lP49re/3fO4jz32GHbZZZdJtfGmm26aFifiBQsWYP78+bj11lud5WvXrjUDxerVq83yL3zhC5g7dy7e+MY3QkoJAHje856HG2+8ES984QsnPNby5cvxxz/+cb2qxYaC2jd//vzSb/Pnz3faP9E+BgYGMDQ0tMH7uOSSSwAAJ5544mSbPK24/vrr8bWvfQ0f/OAHse222zq/xXGMOI7N9zVr1kAp1fNaAfZ6ru+6PvbYY1vsWAEBMw2BtARsMRx55JGOXL/nnnsCAI466ihnPVr+5z//GUuWLMGPf/xjZFmGd7zjHUb2BoBms4lly5bhpptumvC4ixYtwp133jmpNu6+++6TWm99EELg1FNPxb/927/h3/7t33DyySdjZGQEp59+OsbHx806hM9+9rP4/Oc/j+XLl+OVr3wlRkZGcOGFF+LQQw/F9ddfj6VLl1Ye5ytf+Qo++9nP4p/+6Z/w+te/3ixXSpWiXriJZ0PAzVu9lvP7AuiBln7vtf1Ev2VZhssvvxx77703Xvayl21ok6eMX//613jLW96Cl73sZVixYkVl+6qwIec6meu6uY8VEDDTEEhLwBaDP9trNBoTLu90OgCAJ598EgCw//77V+53fX4LjUYDL3nJSybVRj6jnSo+8YlPYGxsDJ/5zGfwiU98AoAmaCeccAK+8pWv4DnPeQ4A4P7778cnPvEJnHvuufjwhz9stj/iiCOw11574YwzzqgkZpdeeilOPvlkvPe978V5553n/Hb55ZeX/Bg21PRF6kKVGvLMM8849833B7n00kvxrne9C9tuuy06nQ7Gx8cxa9as0j723XffymNfe+21WLlyJf75n/95g9o8Hbj77ruNinfttddWmvh8zJs3D1EU9bxWgO3n/LouWLCgtG6VKrKljhUQsKURSEtA32G77bYDAHz3u991HA8niy1hHgK0snH++efj05/+NB599FFst9122HHHHfHa174Wu+yyC5773OcCAH77299CKVUiZfV6HS9+8Ytxyy23lPZ96aWX4qSTTsI73/lO/Nd//Vdpxnz00UdPWl3qhSVLlgAA7rnnHhx55JHOb/fcc4/5HUDpWHS9yZflnnvuwQEHHGB+X7lyJZ5++mlnHxyXXHIJGo0Gjj/++Cmdw4bi7rvvxiGHHIKddtoJ119/fck5uhcGBwfxwhe+EPfcc0/pt3vuuQeDg4N4/vOfD8C9JnvttZdZL8syPPDAA3jb2942Y44VELClEUhLwLSAZp/tdnuTH+u1r30tarUaHn74YbzxjW/c4O23hHmIY/bs2Wbw+PWvf42f/vSn+Pd//3enfYCO9Fi2bJlZ3u128etf/9qQG8Jll12Gk046Cf/wD/+Ar3zlK5US/7bbblvyw9hQPOc5z8FLX/pSfP3rX8eHP/xho0LdcccdePDBB3H66aebdffbb7/KfRx++OFoNpu47LLLHNJy2WWXIYoiHHPMMaVtVq5ciWuvvRbHHnvslM9hQ/Cb3/wGhxxyCJ773OfihhtuwLx58zZo+ze84Q244IIL8Pjjj2Px4sUAgNHRUXz/+9/H6173OmOeO+CAA7Djjjvisssuc6Kivvvd72JsbAzHHnvsjDpWQMCWRCAtAdMCGoS/+MUv4p3vfCfq9Tp23313zJkzZ9qPtfPOO+PTn/40zjrrLDzyyCM4/PDDMW/ePDz55JP45S9/iaGhIXzqU5/quX2j0eg5qG4MfvWrXxkHxpGRESil8N3vfheANmGRGnTzzTfjzjvvxD777AOlFH75y1/inHPOweGHH47TTjvN7O8Vr3gF9t9/fyxfvhzj4+N41atehXXr1uFLX/oSHn30UXzta18z637nO9/BiSeeiJe85CU4+eST8ctf/tJp29KlSydlzqD2UpTJr371KxOh86Y3vcmsd8455+DQQw/Fm9/8ZpxyyilYtWoVPvaxj2HJkiUl81MV5s+fj49//OP413/9V8yfPx+HHXYY7rzzTixfvhwnnXSSM/snXH755ciyrBRBtjEYHx/HtddeC0CTLQC45ZZb8PTTT2NoaAhHHHEEAODBBx/EIYccAkD7Fz300EN46KGHzH5e8IIXYPvttzffa7Uali1bhp/+9Kdm2Yc//GF87Wtfw1FHHYVPf/rTGBgYwOc+9zl0Oh0sX77crBfHMc4991wcf/zxOPnkk/G2t70NDz30ED760Y/i0EMPxeGHH+6cw+Y8VkDAjMMWyxATsNXhzDPPVIsWLVJCCCdp17Jly5yEa70SgN10000KgPrOd77jLL/00ksVAHXnnXc6y6+66ir16le/Wg0PD6uBgQG10047qTe96U3qJz/5ySY5v1545zvfqQBUvniStltvvVUdcMABpr1LlixRn//85yuTmK1du1adddZZas8991SzZs1SO+ywgzr44INLyb8mOjY2INnfRPvwcf3116uXvexlqtlsqvnz56t3vOMdlUnuJsIXv/hFtdtuu6lGo6Ge97znqU9+8pOV10EppXbbbTe18847O0n5emF9yeXo96rXTjvtZNajPjeZ+6qUvn5VSQX/+Mc/qmOOOUYNDw+rWbNmqb/9279Vd911V2XbrrjiCrXPPvuoRqOhFi5cqD7wgQ+o0dHR0nqb81gBATMNkVLTlIgiICAgICAgIGATIiSXCwgICAgICOgLBNISEBAQEBAQ0BcIpCUgICAgICCgLxBIS0BAQEBAQEBfIJCWgICAgICAgL5AIC0BAQEBAQEBfYGQXM6DlBJ//etfMWfOnFA8LCAgICCgJ5RSGB0dxaJFi9Zb82wq6HQ6SJJkWvbVaDTQbDanZV9bAoG0ePjrX/9q0mAHBAQEBASsD48//nipvMZ0odPpYNvB2RhHvv6VJ4GFCxfi0Ucf7VviEkiLB0o7/8eHHtokKegDAgICArYOjI6O4oW77rpJx4okSTCOHG/Hc9CYokdHAolvrPwLkiQJpGVrAZmE5syZg+Hh4S3cmoCAgICAmY7N4UowCIFGNDXSEm8F+e8DaQkICAgICJjhiKMI8RTJUYxIV8/qYwTSEhAQEBAQMMMhIiCeoqAjgL4nLSHkOSAgICAgIKAvEJSWgICAgICAGY5pMw/1OQJpCQgICAgImOGIp8E8FE9PU7YognkoICAgICAgoC8QlJaAgICAgIAZjmAe0gikJSAgICAgYIYjmIc0gnkoICAgICAgoC8QlJaAgICAgIAZjmAe0gikJSAgICAgYIYjwtRNI/1PWYJ5KCAgICAgIKACF110EfbZZx8MDw9jeHgYBx54IH70ox+Z35VSWL58ORYtWoTBwUEcfPDBuPfeezdpmwJpCQgICAgImOEg89BUXxuC5z73ufjc5z6HX/3qV/jVr36F17zmNXj9619viMm5556L888/HxdeeCHuvPNOLFy4EIceeihGR0c3xSUA0EekJcsyfPzjH8cuu+yCwcFBPP/5z8enP/1pSCnNOluC9QUEBAQEBGxqUPTQVF8bgqOPPhpHHnkkdtttN+y222747Gc/i9mzZ+OOO+6AUgoXXHABzjrrLBx77LFYsmQJLr/8coyPj+OKK67YNBcBfURazjnnHPzXf/0XLrzwQtx///0499xzcd555+FLX/qSWWdLsL6AgICAgIBNDU06pqq06H2NjIw4r263u97j53mOb33rW2i1WjjwwAPx6KOPYuXKlTjssMPMOgMDA1i2bBluu+22TXUZ+oe03H777Xj961+Po446CjvvvDPe9KY34bDDDsOvfvUrANhirC8gICAgIKCfsHjxYsydO9e8VqxY0XPde+65B7Nnz8bAwAD+8R//EVdeeSX22msvrFy5EgCwYMECZ/0FCxaY3zYF+oa0vOIVr8BPf/pT/OEPfwAA/Pa3v8X//u//4sgjjwSALcb6AgICAgICNjWm0zz0+OOPY926deZ15pln9jzu7rvvjt/85je444478L73vQ/vfOc7cd9995nfI89PRilVWjad6JuQ53/+53/GunXrsMceeyCOY+R5js9+9rN429veBgATsr4//elPPffb7XYdaWxkZGQTtD4gICAgIGDjMZ15WigaaDJoNBp44QtfCADYb7/9cOedd+KLX/wi/vmf/xmAHnt33HFHs/6qVatK4/B0om+Ulm9/+9v4+te/jiuuuAK//vWvcfnll+Pzn/88Lr/8cme9DWV9K1ascGSyxYsXb5L2BwQEBAQE9DuUUuh2u9hll12wcOFC3HDDDea3JElwyy234KCDDtpkx+8bpeUjH/kIPvaxj+Hv//7vAQAvetGL8Kc//QkrVqzAO9/5TixcuBDAhrO+M888E2eccYb5PjIyEohLQEBAQMCMgpiG2kMbqlL8y7/8C4444ggsXrwYo6Oj+Na3voWbb74Z1113HaIowumnn46zzz4bu+66K3bddVecffbZmDVrFo477ripNXQC9A1pGR8fhxDuJY/j2IQ8c9a3dOlSAJb1nXPOOT33OzAwgIGBgU3X8ICAgICAgCliS6Txf/LJJ3H88cfjiSeewNy5c7HPPvvguuuuw6GHHgoA+OhHP4p2u41TTjkFa9aswQEHHIDrr78ec+bMmVI7J0LfkJajjz4an/3sZ/G85z0Pe++9N+6++26cf/75ePe73w0AW4z1BQQEBAQEbI245JJLJvw9iiIsX74cy5cv3zwNQh+Rli996Uv413/9V5xyyilYtWoVFi1ahJNPPhmf+MQnzDpbgvUFBAQEBARsamxMcrjSPqanKVsUkVJKbelGzCSMjIxg7ty5eHLlykl7VwcEBAQEPPswMjKCBQsXYt26dZtsvKAx6UvbvBCD0dRoR1vleP/aP27S9m5q9E30UEBAQEBAQMCzG31jHgoICAgICHi2Yks44s5EBNISEBAQEBAwwxFjGnxatgJnkEBaAgICAgICZjjENCgtYhOm199cCD4tAQEBAQEBAX2BoLQEBAQEBATMcExLyHP/Cy2BtAQEBAQEBMx0TIsjbjAPBQQEBAQEBARsHgSlJSAgICAgYIYjmIc0AmkJCAgICAiY4QjmIY1gHgoICAgICAjoCwSlJSAgICAgYIZDRNGU86xsDXlaAmkJCAgICAiY4YjiCJGYGumItgLSEsxDAQEBAQEBAX2BoLQEBAQEBATMcIg4gpii0hLMQwEBAQEBAQGbHrFAJKZoHIn6v2JiIC0BAQEBAQEzHJGIEE0x0UqE/ldagk9LQEBAQEBAQF8gKC0BAQEBAQEzHCKOIKaotIitQGkJpCUgICAgIGCGIxJT92mJVP/7tATzUEBAQEBAQEBfICgtAQEBAQEBMxzBPKQRSEtAQEBAQMAMRxSH6CEgmIcCAgICAgIC+gRBaQkICAgICJjh0ErLFB1xIaepNVsOgbQEBAQEBATMcASfFo1gHgoICAgICAjoCwSlJSAgICAgYIYjiiJEUyyYGMn+V1oCaQkICAgICJjhELGAmKJPi1D9b1wJpCUgICAgIGCGY1pCnlX/Ky19Rbv+8pe/4B/+4R+w7bbbYtasWXjJS16Cu+66y/yulMLy5cuxaNEiDA4O4uCDD8a99967BVscEBAQEBAQMF3oG9KyZs0avPzlL0e9XsePfvQj3Hffffj3f/93bLPNNmadc889F+effz4uvPBC3HnnnVi4cCEOPfRQjI6ObrmGBwQEBAQETBGktEz11e/oG/PQOeecg8WLF+PSSy81y3beeWfzWSmFCy64AGeddRaOPfZYAMDll1+OBQsW4IorrsDJJ5+8uZscEBAQEBAwLQg+LRp9cwZXX3019ttvP7z5zW/GDjvsgKVLl+L//b//Z35/9NFHsXLlShx22GFm2cDAAJYtW4bbbrttSzQ5ICAgICAgYBrRN6TlkUcewUUXXYRdd90VP/7xj/GP//iP+MAHPoCvfvWrAICVK1cCABYsWOBst2DBAvNbFbrdLkZGRpxXQEBAQEDAjMJ0mIaCeWjzQUqJ/fbbD2effTYAYOnSpbj33ntx0UUX4R3veIdZL4rcm6KUKi3jWLFiBT71qU+Vf7jtO8BgQ++j08LgMR/a6LZ3f3IpVJbqV7cNSImoXodKU0DmUDKHkjq98uy3f2KjjxOwdUL+8Q4AgHjhy9zlD/8SKtZ9FHEMSAnIHJGSEM/fz673h1uhshQQMQAgqtXtTiIB5LpvOhAxIiHs8uK7g7gOJWpQ9QG7LwBQEiJpQ3XGigbkzmYqzxENDCLe45XrPff0F1dByRyNA98IAOje/A1EcWz2Y/YtYiBL7GcA0UATjZe/Zb3HmOlIVz1WXqhU8c7SsosYiARUXANEDUrUILpjuk/IDCquo77Dzus9XnfkGX0vi+fmwOy5evnoWud4UTKOKHf7TSQzQGbF9gIqEojyBFASkZK6vzSGIAdm6w2KPiRaqxG3Vpv+a84tEvo9T6GSjl6c56YPoFY8o1sjkOOj5ncxOATZbuk+IWLdj2Vu+wbvy8Uyp5+KWD+bM3pGS7sOrVdrAKla7/WcLogogphinhYxwVjYL+gb0rLjjjtir732cpbtueee+N73vgcAWLhwIQCtuOy4445mnVWrVpXUF44zzzwTZ5xxhvk+MjKCxYsX6wd70XEBYOwbn64kFO2r/wODr/vAhG0nwoIsgUo6kGkGtIE571g+8UkHPCuQ/fZ6RPUGokYTEPovqZK2echGjUGoSED+8Q6IF74M2f/dC0QCUdwAoghR1gWkALIuVJZC7HVw+SD0YAbcgT5P9QOZ+jp7cCtvfUXtoQd+nuqk4FkxwNFyKaEiYYkE+x85A876rstd1wBCIBICyc+/VZCdJiIRQ2UJQKSF9m8GJzvAdH9yKQYOOWFSx5uxUEpfXyIqUeSSFUATAgkgUohkDogMaMzSpEFpYjEZwlJ5bDqGzAyRUEU/pXZEqrjnZjupiQpbpiKBKEv0fojsxHWoSEB0R8uEhe2Hk+oojs2ED2mKqG5JOBFZ2Rpx+nIkBHx6oaTUfZmRGVUQf6A4HhEWtg5ErP8HtTqQJhtwMQOmA31DWl7+8pfjwQcfdJb94Q9/wE477QQA2GWXXbBw4ULccMMNWLp0KQAgSRLccsstOOecc3rud2BgAAMDA6XlKkuBeqQ7bZpWbAmMf+/zE7Y5uf17yFevNIOBSvUAMecdy9H65mcm3Dbg2YMojhE1mlo1qdW1EteAfWCLGhDHUCJG9n/36gd7luoZbDEDjRpNyHYLtRdbn678vpsNyYiEMA9fenhHYA9pTw0x3/13aDIT1e1/Jsr1g1uJmn2wRwJRYxCo1e1slQhLrQHIXJO1ODbLVZ477a/texTSO68uvtQhGk3bhpQpQPUGFB886P9WfO1cexGaR75vcjdjBqK+YBcAQPrko3pBMbgbklAoGhCxGezNb0IrHpDZpI83MDwf3bF1QCQwMHuOWd6Yux2Stav0FyXtvn3CEnmKnKiZvgwhgCyFyNax3zXpjPLEKDSOwmKIBBwCTJ9lq1MQalH06dxVDqVL8ACY35Xp13z93BAaVbGtPkVR/b/ZhIhiMfWCibJvPEJ6om/O4EMf+hDuuOMOnH322fjjH/+IK664AhdffDFOPfVUANosdPrpp+Pss8/GlVdeid///vd417vehVmzZuG4447b8AN6HV80moZorLvk4xj96nJEA4OI6o317oce2IDu7OPfORcAMPrV5RveroCtCtlvr7cKi4grH7D64a37UZR2EaVdoDMKlXahko4mw1nqDPgAoNIEqt0yD17VbQPQfTCqDziqCfVPei+hmF0aMFMQ8lSrLjJzZuYqElC1ZkFeGhCDQ0bOdx72UkK2W1Cdcffa3HUNIhEjqjUgGs3iOgltJmADF82ujQnAXDZpzr1z7UXV59WnUMXAHnHFRUlAKahaA4iL+SjrT9kTD016/wOz52JgaE5peWObHewX4c15SYHxFRfTNmnaDWh1JlLWpAnAKDCk5Ji+m6bIR9dCtkY0YS36rUw6uj8YMyYjE/yVJdUEo2JdQ+6pP7FtB1/3Ad3nqG+pzUdaqGDiVF/9jr4hLfvvvz+uvPJKfPOb38SSJUvwb//2b7jgggvw9re/3azz0Y9+FKeffjpOOeUU7LfffvjLX/6C66+/HnPmlP98k4LM9Sy2XocYmgMxNIyxb3watVlNxIOzzDpEQnyobscqNeRvQLODdPIzn4CtE9nd1yEaGDR2fSiFKE8RpW09M85T80CPZKaXd1vadFQ8SEkmjytMQrUXH+ZK5HFBPGqFSuL/xt7N70IrI44fTAHlD1pFO4m4ULsBaBNXfRBRYxBRfQBRowkxOMTIfMxmvdAKS62O2r5HFSejj68643obZs5SSceaX8l3jClItKz9wy9P4q7MXNC1JN8VAK6ZplArorSLKEsAmVkyUKyfrnx4etqiqhUIu4Kw6gq9CqhaXStw1O8J/FzIn8Xcw4KAF4RVDA5pU2GtromKEIZY++SViIgmN4y8eD4shohkiSb89MpzDB7zIQz+nZ4gD/7dqeYzosmZOgOmD31DWgDg7/7u73DPPfeg0+ng/vvvx3ve8x7n9yiKsHz5cjzxxBPodDq45ZZbsGTJko06lsqtpM1nmII9vAf/7tTeM1NoB14tX9eNw+2st56JWW89EzLNgk/LsxjpL67ScjYnA0paJ0bAPEiRdaGStusMSA6IWWIH9gpEA81i19KqHDTrZUpEJURc/m6cFjM7iHLIzDheKq7GMLOFdt4dBGoDZvCBiI2zbfqLqwDAUY6iujYpaUf2HjNmepe5VpMaTdtm8kHoY9D1NL4pUVQQGD17JifYKOtogptn+nqsj2BsIBpzt7NfuGOnIa32fkdZashTlGeI8syci4pr7vaAdZSl/fgKX7GOqg8iGphllLio1oBoDkE0h0r+iACsTxWR2oLYOv+p4t1MMoFisimrzfmb0TQEhORyhL4iLZsTETF3wM7m2i3IorPPevNHnfWr1BYesQHAUVfmnhh8Wp6tSO+8GlGjqQdiktRJKqfZJsnThfO2Yz9nUnbkP9A9xEv+tmx7z1NUzjYLOES8kMed2Sv9H9Ju9YOblKGCvJhlbHkks4KMdaC6HdSWHm6uDUn/6Z1XG58W1e1Adlp6X945R2yWbQYs9hu9ACD5+bcmvF4zGfWFLzD+LfUFu2jy4hMS5g8SZV1NYIgAYBIKyYYgElCNWUBct/um+07HjGMdyRRr0qnblGoCw9UX5p/DTY6mnzeaiAaHNBGFJjUq7VrflCzRk4C6vf+O6sYdzX2HcyIvtJyUG8Ik/mebA+TTMtVXv6P/z2ATQWWZZedpqm2q3S6yVgcqZ3/8gpFzEtO+6gto//DLelaYaXlRBZNQAArCUmvYB3Dhl0DOrAC0SkFSNoc3e1R5PqHKkv32euS//2nZZk8Pctonf2f7dj5XPOyN7E5+B5kdZKy/TZcNPpkJrza/+4SlAA0Sxpw6thaQUvuRxbFDoKpm477zpvFTKPx6thbUd9jZ+oR4/iNR1rEr+s6yUwX110hA1ZuWbABlB2Ey9RRmLU1c08KZXPtCmfYr60+i+4k+ThTHEM0hAIAcWwu59imotiaxKksgW6PadNjt6MkA/VeyxL44fBKTWVMQqSvcH4ibLgEdNVpSgDYxdDefqk/L5I+3YsUK7L///pgzZw522GEHHHPMMaVgmC1R7y+Qll4g05CU+k+RdJB3EuRJakjL+LdXQGUJZr35oxj7xqcBaOfabGQdsmeeQt4aQ94aZfkFplemDegvkNkjqtdt9E0xOzVO3zTw1BrlwdjMBCv8T3pA5UXUWp5DdTt6EKhyUJzA5FLycyFUPAFLs1buZ8J8T5AliJf8rYkQKhGWWh2RMYHp/EbaVOvOgJ3rUkGo+O8qSyE74+hcfwm6P7HlQPod9YUvQG3HXfUXUrMqQocjmdn1pojG/EWauBifmcLsIHSOGHCH2ywxBEqJmvZlofwtZGJkpkbrfJsYgqryXP9vag3Idgv5mlWQY2s1maBInyyBHB9F1JylJwTFf8j5D6Rp+T/AnvXgZBcwZn0fg6/7gPVr2Upxyy234NRTT8Udd9yBG264AVmW4bDDDkOr1TLrbIl6f30T8ry5ofIcyOAkflO5hEwzo5jk3S7mvGM5xr7xaahcYvSry6FyiSgWZh3VkRD12lYjzQVsHAxhITLCc0/IXJs1SBaP60BzDqI8geqOF9ESjED49vqJUHoISx2yXHx1TUGkvgiznjkmoUKZIdOLyd8iYqgM1TPRoi3xkr9F9tvriwGnvF4Ux1DQs2iVdFjUkXSSypV8EvhnPuAQ2SOiVszauzd/AwMHW2f+fkbtOXs63/M//VY7Rcd6MI6fu/e0Hq8xfxGSp/9PR3SJmh5NeE4ZJYs8PlpVIZVF0Xth9jS+R8q9l9TXVar7QDQ4pE1AjSaQJZDtlo5IA6yPFylpTFmhvgRGpm0Ooh4TyaK/zHrrmWbR+HfOLbkFbE4/qUhEiKaYXG5Dtr/uuuuc75deeil22GEH3HXXXXjVq161xer9hVG0F6Q0/isql5BJBpnnULk0igkRFgATEhLaR/BjeRajsJPXlh5erXTw5FZK2pkrDbpku/ezwE4WHslRuQ3D7/3gnpwy6DjzVviT8O/xXgdbwgK4yonXPl+i73lMOm4vZaoHwUtu/e9JJ7rrW6iCsOz04k2y+8Z2z9WqC6BDrUVchD1HLAS66MtRZBQWlXatOYbQS+3z7rVJJseifMx9JJLDTJVAhSrJVZVeEwB/efF9S+XYEkIXTJzSq8f/bTJYt07n1pk/fz6ALVfvLygtPaCyBFJqdYTMQjLNoKSE9CKGIiEw9LaPA9DmIZlmULnENu/VJQfWXvwvgbA8y1Hf/3XI7r5O+7QUYcQElaaIBgs5PUugZK6TZBU5WCBzyKSDSOaIag3Hzl+F5PbvIarVbRixlEVm2WJ9lpq/EhORFfYgj2r1yoR1zn5FbPxSACB/4OcT+uoYZaSTFm3PK/1ryOE2Ks2cmQqTswGPEo8R6as1iqglgeTW/94q0v2XoBRMWv9NDJ2iv6Hvg/FvkTYkuNvS94ycuLudgmTqUhFRDeYdgGuyKfou9QPRHEJeRPiopFNEaDaMYqNaI8YkD3ACbPuYylKmENqMymabKgd1mZtJKmHg1f8AoP/MRH6NvV5JVglKKZxxxhl4xSteYSJyJ6r396c//WmaW2wRSEsP5N0UGByATDPtx1I8/Kijr7vk45h74mdKqf1FvVYKZSbyEhAQ1RrG8ZTUBpV0bBhyngPdDmRrxJAMk1E2c/eDegP5Az8v1fCh7SRFHYmKukGAMZ9EvjoBmAEFcE1IPZUJGhAA42NAg4B44ct0/aMiB4bdpoIcFYOUyhJN5up1ky3XQMSF6UCgyFBvs/uatsd6ACz2A/K1EULvq9NC47AT0bn2IkSFqWirQ1FaQdVnbfpDpW3rgBsXzrlFRI+Ka4aEA9CJBIsszlGj6fRtWTjXRlRLC7DvvA5Wcf9l0tGEJ8+1Y68oTEG8T3c7Tj835n5fwSneZZaWnutEVrjSvrkxHSHLtP3ixYud5Z/85CexfPnyntuddtpp+N3vfof//d//Le9zA+v9TRWBtPSAqOuIA5lk5n2HD39xvduR4hIQ4IPIivn+4sN0RtxaHeKFL9MqhLS+LkQAaNZnyIWJhOn0Nq+wEGVLfhLj3FpClYOtY/ax/irwHv6VIchFGCyUNOoKZTKNYj3oUEoA8luJag2jMpk2ybiskgA6lNask5dMVCbTr4i1PxAfAClranGd+j9zRQ8InZFYNeds8kPVFu0OQJcaIGUnylMoMQBVa0LU6lAdNzpHJZ1CDZSAyHXUD+/7gKvASWnUGghRqJXjtg8U5ASAKfZJqqRivlOceJBZ3/QXqV0ARi79BIZPsKrK7Ld/AmPf+DTmvGP5FstkPi1p/IvtH3/8cQwPD5vlE6ks73//+3H11VfjZz/7GZ773Oea5Rtb72+qCD4tE0AmGdJWe9KEJSBgQxHVGzZsuXgYR7W64+AX1eo2hT2vmVJI7YT0zqt1VWTuJ+MQHc8ptwBF99T2PcoqLBVkKIrjwuwkKmuvmPIAtQGTe0Z1WlDdtp5dF+REdYtXcS6cVOlZd2LMYjrSw/OZqSJVvJ2F2YquDc3KnYKOaYrOtRfptOwy36qiiQjd7XZFPrQtZH0Q61qbJ9RbxXUTEWey8+aJztXCk7bR+nS/O+P6XrN7S1GbVARTFWZSrSBK48jLC9Kafl/Ut0JBjEn5I1JS2fZJOLePfnX5VpEUdHh42HlV1t9TCqeddhq+//3v48Ybb8Quu+zi/M7r/RGo3t9BBx20ydoeSEsPzH7rx5CnKfI0Qx7yqwRsKnj+H+Vl2p5PL1pG4KYdHZlU/kurwgxU9eKgqspAQVDI4bFQR7jCYhJ2ccR1m9gsbUOOrtVyP6vhpbJUD0Q0WBGxKLKaav8Wb2CjVP/1umMuMiYj3/xF7UzdPB9GoSJylHTQufYiXXm9M47OdReXrl0/Y9ZgE514ECkENlciVNWg8iYSKm4U2Xm70GH9ib72gI1QK0iJSjqQI89AdlpO3yD1hEg6SEEsooiiRlM73nZ0ja1oYND0B/JxkYzYO20tAiRUbrNDK6mjP7nKAsyMOnE8UeJUXpPFqaeeiq9//eu44oorMGfOHKxcuRIrV65Eu13UMJvuen+TRDAP9cDTX/4YhuIYcb0WVJaATQY/2RmZTbTpxH3AkF0+4uTGMeuUB24ArpOhMY+w8GYn94m0WUUpRbqRzlkOlmJg0G2y/iuqM1aoKK6zbUQz3xqs6sN9dqgtxgHTdYxE4VgMWN8I7TNRTvFuzGL1eqkQJBE1JXPI1ihEmmqHXO7MuxUhlwoQEeYODW7yY423O6jlWhmLsq51yC0iiYxpkkhzt7iPPNFbtw0MDjnrAjB13CjrsWq39H46BSmOYx0GPZqYdeCZQlWWlBJ8Eknh6ouou8MiERaZZCUyszlBEUBT3cdkcdFFusjowQcf7Cy/9NJL8a53vQuArvfXbrdxyimnYM2aNTjggAOmVu9vEgikZQJEIuRWCdi0kOMsCZMs6p4ArinDIxqqiCICYAoJUlQSr0zuRA8BRh73J90OCeLvBEpmB+YUnCZAvWEqSZtIkEK6d6KV6NxYW5RHOMx3v9id10auDqmC/JApTZMo6zCvRAzk7Jry7cy5WaIUCW0mGjjkhNLx+xXz58xCu1OtNEwnkjUrMWveQqTrtCOtSHXFbkWp/mVu62ARAQHK7wBka7Qoc1FHVG9oEtxpWSIrc8iR1Xrddkv/F4r/g2yNQgzNgUpy0ycBIO8kRlkhkkLPdlJagMK3pQ6Mf+/zkJ1xo8RQFOlTX/gQRL2GbU87bxNezZkBpdZP46ne30ROvNONQFp6QOUSO5wZFJaATQsz2yTwAbuw4/sDtiYP2qk2imMThWSihQAgS6Ho3+2Zk/g+HcLiS8eFb4kSQjtJArrSLj9GlhrCEdEsuMJvgc7HfKfPdM7knNmjAKlRblhyOUNSnGuWO0n7/GvKBy57jWWRbbW+VREWwmCzucn2nT/wc0RCQAzNB+YtNHWloqQNlXYhGoOQjaJWEL8fLK+OiQ6j3xNyqB0yRWcBALWGNgNRyDQKpYS2882jMtfmos448k7ikBU+GeXJQwFAphliYUOieX/Z/kNf2ARXcZKYjgSlW8EkPJCWHtj+A+UCiAEB0w5/wGURP4otc9SRQnUx5o8iMkJl406YslP0s0KpcCKCClBIs0oTQ0qMykNtocGBHGlJ9TH7qwqvlt6gxUxU7Jzsd2b6yhIt/1MxxNwOehHbp0NgjJnJFsszpiFmCsjb4zpjdX3zZTbdmqDaLcikg/puL4f84x2I6oO6rlCuSy9Etbr2aclT535Q/yYn6QgA4liXa5DSRhEZn6e6Vfi4j1Qukedd1IYAZDrJnGy3DMn24ZuCaB+0nEcVCcp1VCyPmw0TVbTmIu3zuG6kVXWYTYLpUP43xKdlpiKQloCALQg/CZYqck2QPwmtY5K3ibjIbSG1E2KrMC/V6vpFpIfnuWDb+nlZNAnxBuzC4VERuUCh7LBEcdqZlYVjF/ug/VMCLwMKW056hGlzB9wq8xRFVYlYZ6pOeb6XvKy40AyeXQNSWTj0oJeYa965/hI0DzsRgC58OnjMh8ptfRYhf+DnUN22Cc+vitiiey9e+DLIP95hTIil8g90j2p15tytyWq+ZpU2X7ZbhkDKdavt9gNNrfoVipv5D8QCWauDuN0C6tqPRbXXsHDq3CElPihRqEA5q7nMUshE+8BwdWbk0k/oz67VcZNjQx1pe+2j39H/ZxAQ0MeQLZuZsvbiw4pMr8JVGoqBQjSszG+dZXUiNmRpESrdMMuNeuGTAHNwWX6hiLphJhsCRXGYkFPflJV5Ia0s9wWtT0XryMxDFdThExEOJwyWmX4o7JulYy+ZhljbzbUrBqB4YMDUCcvG28bXgsKfB4/5EMa/93mMf+/z1e3aypHfd7N2FJcS2d3XQY6Porb0cG1KK5yXIYRTaVy88GUm2WHUHIKKbcVligyyjti6f8rRNej85a/oPP442k8+ZRLMySxF3u0i73Ydc5BMM0OAZJJB1GvI24UPTbeNvJMgG+9o0lFkJ1e5LKJBdf+QeY6s07XO5SgnjqNacwBK9eOocK6SW6P79sxGUFoCArYQxr9zrplVdn9yKaLBITODVBmrn0JOrSJG1ChmrJScjcJGgXI0kUmolhsn3CqQamKcUtngHzkKiOsMzLPn8qgcSNteVVR0dhyC4WbZLaXhr4h84kSH0vD75QCUlLoOTb1hFScy+xC54ajVgW7Xqi3xuF6/OWTCn2e98cMY/87MNRWnd17tZFmeDsiHfwkAiPc62Fme3PrfSG7/HkRzCCprQXXGIYbnV+5DdYuMt6mOjjOKIuVXKUKSZWtUV21OU6QtvY6IYzQHhyCas5CNjKA2a7BQEW2IMg9jVlJqR1tWrJZHAFHpFSIkOVLknQQyl6g1tZqZJtosFTcbEI2a/j3JDEkh8mJJrj7+DqefB3xy84TKa9I0tVpZUbz+XDQzHYG0BARsKXAH2YFB64wqc+2M6KeuL6T1KI71LLZwSjSoIiXcrwVuXhegIBkmcifRETfccZXt1w9DNUSHlnFCU2sgqlGos9R+BjyLrQ+Tv8MP42Z1iXySknScEGzVbWvFBqzcgHHirEMUOTvMbDpLHR8GmWa6nVQ+oNFE8vNvIZ63fbm9MwDZXdfoKsciriznsLFQooZ4l79xllGVcmQp5NhayKK+T9SodvJViY744ZFbotF0TYYo8gENDKI+NIi01UHeSZC22qgXZs9ktKWJRNx0zHsyySAaNfNZ5jlQONumrTYaw7Y0A48OsutbAhTFwlFbyCSUpymi3JqVakPNUnp/v4bPpsR0ZsTtZ/T/GQQE9CHaP/yy6ywohLH1A+QIW2T4LN5l0rEDhaiZLLMASqYcB70UliJXBr3Munxf0ppwKDmYk9m0cJpUaWoTvrGkYXRu5Sq7zJxTqCDczONkOi2pOnr/sjVq83UU9WxkVpiavBwgUV07D9uZuo5miWIB0ag5M+p0ZATZyDooKdF45d/PyIii7s3fAKB9O6IBndAtuf1707Jvn7B0rrtYm2yIpBYZmqNaHfUDjqnch2yNGDMPhNAkcGgYYmgOouYsXbKhcPIm4lMfaqI+1EQyOo50REf85J0EydoxpGvWWPJa+LJEQt87medIRse1uacw6ahcGsdVWpdgUvezdx4plHW6Zl+A9XsBgNUXfmSKVzdgqghKS0DAFgAlZnOW1awpg6CSDqLmUCHJs1lq1oXqjJuka7oidGIcUElOJ5NKFBfFAuGpLQU5iGoAJIscYqnPo1ibXag4oYnE8c041Ga+jGVANbNuNvgAcM7LOhwLS1zo2ojYOvOSQ2bhfClbo87sWx9Tn4NMU0Bo52KS+VUuLVlJWURRvYgmaeqK2+2r/0On+p9BSG7/XuFknBcDODQx8x2qpwnNw9+LznUXQ1HSNgqXbzSdgpOq8KuCiDHwmneYkhJRoXBFNZ3ILxKxIcqkaEVCoD40iLgw52Wdrhmcsk7X+KLoGkLa+VY0aqjNakIUhFimGWS9hrjZ0D4na8cQN3VyxNrgABIiM8wpV8Xk75KV6hGJYr242TDbiDjG6gs/AhHHmPe+z22S690LQgiIKTrSTnX7mYBAWvoQay/+F9TnzEI6Or7BFaTbP/wyKHRw1hs/vIlaGDAR2lf/R2HOYHZ5Ui94eHGWQrZGENfqJrW5YAMEAMcfxFFuZG7CR0mdEUNzXMLhO6t223Z5sd9owA2HNiYrTlq4EsKPD+jwVE7GOGHxj5+liERh6mHnqM0+mkipIsLEoGiDTDLty9CoabJSL0JkZexkQuUzaif0mVVyp/X0Pdn0idk2BO2r/wNRU/s+NfZ/nS69MDhUOBFvuurDqtOCynOIwu9q4JATNJHJUqDTcsxEJolcoYCR0qVEB1HRF+X4COTaVYhmDeuCoeRHkueQuQSQIQMgc4lI2ORuhGS0ZVPTxwJxvYY81X2g1hzQPjKdBFmn6/i3iEYNMsnMvuJGDVnhDwPAeVdEXho15ElqVDnZzg2J2pwI5iGNQFpmMP585gl43gpbyG3NRR+DzHPknQRxs7HBhKVzrU7LDKHtyAFbDqrbRjY2BiUlxr+9wjrhAnpwTjo6GiiOIcdHoaSEGJoD2WkhKvwYUKsb04wepG1yNjKXACgG/KLWC9XiIYIjYgA2C60mDoWNP+lYoiJYAjDH2df9brLUCq1UyEQWfhe2FABtZ0JjydeBfGqE1GSBHG6N6ajj5okBzPnINEOepKjPmaUHTQqfrTWMmcHMoItIECIyVMkd0ORFxLEmQNN0r6cTvurDI3eATVfQT3U7mPXWMwEUpBswid9UlmofpiIJYSRibb6Sucn4HAmBaNawUb9Uu4VsZB3ibgfRQFObZdpddFaPoP3UGjS3nYvmtsNozJllnGzzIsbYOOxCZ7qlGnEAkLH7DGjykXTGERcKDF8OAFmbalMJxI0a8iRzyCyKY4h6DWnRr8n89OS578fgP352ui91wHoQSMsMxaMfPh4qz/HnM09Ac9th7PDhLyJttc3DNWtt2Ayw/cMvm4HE1OYI2OygSJS8PY7O6nUAgPrwsI56qdWLyIpCPhfCOFoahaDbgRxda5K7qTSxFW5NDpUUcnStDYsGXFUEMFE2utZRYqV/ptyoRLfBNwMpSp0vc9Ne/jvgmohUnuuEcNKqNIaksDpDZj2zrQTSFFzVIfOAzaKqI63yJEXccM1rJiwX2qkSaaGgeGYAPmtWUkICZqB0zE0zGOsu+Thqs5qIYoHxb68AAMgsRToyPi1mjFlvPRPrLvk4ABjlQqUpokGqppwAVLwwLYodOplrc4hCASN/p7yToLN6nbkfaauD7tpR5EmGtNVB3GygMWeW+Y3uhyEcSeb4qqhcGgWl1mwUUUOFokZdoyiAS/vxI40ANwFdXNz/rNgv1e7ZEvlOgtKi0R//yD7Ab974WqhcYdYOs7H7xd+f0r6IsKStDmSaGbWFCjeu+vwHN+hB1L7qC27xMOEm3QrYjKBBtJMgKxSAOS+kxGw2p0pUr0OlKWS7hdoOzwWKInGq00Je+LmAKuEyvw+dTTRxcr3Idgui1tCOssV9j2B9V/z2mWJzVIWZwq2FsCabou6c/k45YurG9GSLLLqOteYasAgkyaNQmNlIOpEmxXHzImS2KMAoi8GPCIsOey58WKBNWmQSUFJC1Gv2GuQCIo4dEuNnRe0HtL75mcJUEmPobR9H+4df1tloC0fj6dj/0Ns+jrknfsYsG/vGpyGKPmmULcrMTJFD3Y7tg1mKKOkg+7+Hda6fNEMy0kJn9QiyTlcrimmKrJ1oxaOjVReZZKgNNkwEUN5JnBpTyeg46kNNNxKoICNpqwOZZE4YM6k0nLxqVa1mCU4BXlyR9p0VYdC1ZqMwY20+RNE0JJeL+qNPT4RAWqYJ+s8yPTHwNLiIWCBPMjz43mMdIrShVadVt6NnsIVJYPDvTp2WdgZsGNo//LL5nCdpIW0XD8YKHxPK0WKcbQsCEtUbRpVRWcoKFsZW2fD36Zl0FGBLA1BOFWOGkfq3QvqPaHtDLLykbiZNfuzsn1CKAKLlqY0cigp/Hh7W7Cf6MtcuT1Cbpc1jlMbfiRAprpvjg0OnnmaI44YdsFCNfiT1ZL7h13mqpKV91RdsqHuBdZd8HHGzoYmIKK41qYTNIRtxVhBg7Yyr25GsG0Xa0rlb0lYHWaeryUHxP4gbNYh6TSsinS7ywpSnpHTzpiRWLfFNOpxsSCkRwxbTJKWO4DvkOoUT4fY7AGYfeY8MuwGbHoG0TBNEHEHFEZLRqTvu6RlhHaJeR9ZqI08z/PYtR2DWtkMY2GaOZvydBLt8/mvr3dfoV5drr/riD18v5NaALYBiMEnHWkZpAXTmVXKQpvVUnms/l1odqjUCKSVUp6WTbc2eDVUk5lKZzv6pcokGtEJDg7Uqsu3ycgCOMyzgOm+anC0CKEJanbBjQ06kKaYIIRANDBofGGvKYb4xSN08LEBh1tKVd7NWxzyIeNp0PhMm84/KpQlBjZu5GaDqs1leDpkjytzz42qL42zJZ+cs+qhf0p2PfnU5AGD4hE+bZdnaZ/T7BpqQfRDJnvXmjwKAiZrxr2XczKCSDpK1Y2hsM1s72lI+nHQMMs3c+5NLjD+1FjJJkYyO69DlwskVAESjbsw86XgbUkoIIQzBqQ1pf7wol0hbbWSdBHG9ZkhM1klQazYg6jWIog9m4x1kbf2fq8+yOV9o3wCMrwoHJzH0HKXvm5vYBvOQRv+fwRbCPW870vkucwWVK3TXdae034fe9ybzWYeqas/4WdsOoT48hNpQ03S837/9qF67MZjzjuXI2l2Mr1qD7tpRjK9cPaX2BWwcujd+FRAxus+sQ+uJ1UWIpVVFBv/uVC2jt0bQXfWUScuvpET7kYfQfvghjD38aJHC3M1vEgmBPEnRffoZJKtXIy8Sc5m6QPW6JgnjLBEWM9vw7yrXfipqfEQ7UVKuGGjFhIiPdcqlRG1JkfLdMwcVy00umCJyTSUdM0iIuh4E+Uza5NsoBpe8kyAZaelBaryDZLSFdHQcWaujTSODQ9qhk5uWCvWGyh+IRq00g/YTjFF+D+MfM8Mx5x3LSwNtd+0o8k6Cee/7XMmMvOrzH1zvPse/93lDoqNZwwB0EAAha2vykLW7ZiDNxjsmLT4KM07eSdBdO6rXLxTBxtw5mLXjthCGBGjiSaYZ3Q9SHc48NAjBClkqqQlJ1moXJCYp7pm+5xQFJNMUaattiE/WSZAUeV9kosPes0LlJOJCZMcsY+oN9UUiLFLKSoKzqWFyzkzx1e/o/zPYzPjl4a/Bfe84Gs1tZuGuow81y1/83z+CzBWkVLht2aumdAz7x+uYB2p9eAhx3Tqh6Yfs5OpeJKPjSMc7SFsdY9MN2LyQI6uRPfOUeZh2147ZOioFBo/5EMZXrkYy0kI23oZsjSJ58gmTpyIZKeqryFwvH2+b8E394M+Rtbs6MVdrzPrI1MoVb5WURkVRnZbOcJqlOjQ1TZGteQr56FpNNorEcaSumArQRHiyRK+XdOzvRE7StMhcWxAfIkXswU+SO78eMs3QXr1OX4tiMMwLEiM9EpN3EsjWCPKWHqxNJFB7HLIzrhUdlumUkyHdJjubjmLt52IijXpkfJ3J2O4D/25MMISn/+OfsOrzH0SeZnhiRW/z8Ng3Pq37QLvl1ILS0TV1HZJcKF+AJjDtVWswvmqNvZ5Zgu4aawYy96PbNSojqVtpJ0NeEJe01TF+IpHQkzV65mWdrvM8lCyDLSWbo3wrdMw8zTTBSFIkoy2zDRETp5YQ+x/y/dMxiNCQMsOPtbkgYjEtr35HMA+tB4986Djje5C1U8zeYQiDO2yjE1Z52PcHN+C3bzkCjaE6blv2KmSdDK/6xW0bdDyZS8SxYKmkMyAF8iQrMkYOau93IRDXY9x9zGGQucK+P7ih5z6zVgcySZHmEo05s0x59YDNg/HvnAuZ6MgIqxzojJsvvPC/nXW3/9AXsPrCj+gEWe1x0w94JEuydgzjq9aYbcjBdHDbuToSpnAujWKBvD2O2kDTpP7neVjI9yAdGdHmpblzEA0OQSYddFavQ2POkB7I2XF8J9lI5pBtVgEaKAgNpVu3Aw0AqE6qE4MxAm5qwhSzYFGv6QEy0bk6aJ0oFpA0C2bZTEWaov3UmsLMEDuzScrfwgcZ/uDm6dvp91pzQDuADjV1ePkMxuoLP1KpCm3/oS8437f7wL+vd19rL/4XNOZtU6hkic5aOz6CsW98Go1522D8iSeRtjo2MqeI8qFr2F07BgBoDA+VMtGqXKK7dhTJyDjiRg2d1evQWTte5EOJkHWKa8/aQ+agvPgPZO3UuXdxvWacd0W9rhWfVtscl5RqbW7qGpXFmE/zHPWhQWOmpX3S++LPXLLea7Y50/gHaATSsh6IRt2xazaGh7Rn+5oWVC7xi0NfjQNuuMmuH0dAHGNgeABRHOH21yzDgTfeMqlj3feOoxHFkZH8+Wwwa9tsnlEcQwKIm3VgZP3mKDNDTTOoIT1zXHvxv2xwnpeAyWH8O+dqsjA8FyrX6fcpLXnWthK0T1hIgq8PDSISMfKOVlbI16IxZ5YOe2ehmqJR06QUmX3IdxKQtqKkhGyNaFJB+VAKwkLKRDLS0g/3eg31wSGIWh2REE6IfW1W0/rGZDYZl0Rq2mey2JIfC6z5RaY6PJUSiHHCkqfW/yXrJFCtDuqFGZQkfhr8as2G2R/Pu0EKIuX1AGxobloMZEIKJ+KDVBsR29wbKpamfs3A/Lkz3rdFxHFJVQGAxz9+IhZ/5hI89s/vBADsfM7l691X1ulCPf2MibZBliAaaCIemoNk9Wp012hSouo1dNeOQdRr6DyzztxjMs8QYSG/lzzJkIyOm/si0wxjT4wgT3LUBmuIRAQlFbJ2QVw6ifGbIUKhcgUlFXKpoyojISBhfaCyVrtIApchbnBFOrYkpuhfFEHGI8U0wYmNX0wUCzyx4lTseOaXMVMQiWjq0UMiWv9KMxwz+x85AVasWIEoinD66aebZUopLF++HIsWLcLg4CAOPvhg3HvvvVM6jkxSxM0BbV+NdUrwzpoWlnzjGgBArVnDLw59tVn/Rd+8FnmSI24I1Js1iFjg1ldsWCEzeigD1o4ZN2LkSY7O6lFkrTY6q9chGe0giiPEDYHfvPG1PffHH1gyydBZvQ5pq43HP37iBrUrYP148tz3Y/TRx5G1tKlEdsaLWeWoCWHnSsDjHz8Rfz5T17bRoZ8Co39+Emsf+jPWPvwXnUywsKdzxz8uTdvBWT/MRV3XYzFqR5pBZqlOdT+6Btla7fvSXrUGyYjNLivTDPnoWmTjbeO8mLbaxgSjskTvhxJ5FQXueJZRqo5Ln8kfxeynUCj5u+8gS+Yz2p5UJr9mDJl8KDSWVBUyFbSf0n5c1F5deM/m2eCmiJy2FcL61ojY1s+ZoZj3vs9V+lYs/swl+ONpb4FM0kkRFoCuSW6Ibzo6bnysxv7vKWPWyQpfldE/P4numhY6a1porRpFd6SLkT8/jZHHnigigzRJ76xeh5FHnzD+S2N/eQpphxREpZ+ruUKe5EjGUnTWjmsflDRD0kqhcqUVtlybw7O2duBNWx2TBZf+IxR9RFB5rqOQWF/iz1YOxcg0z5o7UxB8WjT6Umm58847cfHFF2OfffZxlp977rk4//zzcdlll2G33XbDZz7zGRx66KF48MEHMWfOnA0+zkPve5PJnBnFAnmaIW11jZTZnNdEfWgAY0+MOtu95Hs/xi8OfbUmFHWBPJkcu93rqz/A799+FJNAJfa89GpnnXvediTQ0uqKzJXzAJ8INBuWUqKzegS1IrdBwPSCMmw25gwhGxuzM3hyMixs7Eby7iSQaYo/n3kCakNNk7slHW8jGRnH4LbDOvQ9tbNOTQi6EEIgHddyfdxssNml2yeyIjOuaCTWiZLSmNctGciTtBSKHcMm7aLU6bXBAURCIBnVA/rQc7Z3Ms7SsUlBof2JWBTEIUYu2eCQWkJGSkoyOm5mvORDQO0g01KeW8WHTGdpq2P9JShzar1m8nL4uTi4Ay7fnkxr/fCQr0qBoHM9STz/wismvZ9tTzsPqy/8iL62SYra4ADS0XGMr1qD9lNrtJKyUqK57VzUZw0iGRnX11PqIIQojtAd6aLebKE+S5uxa80GRKOOzl/WoDE8hKyTYM0j2rSZA5BSb5cnElIqQOZIxoA80aadrJ0hrlMtoKh4Z7WDcomsk6HWrCFqCmMOMkpKYcYihYX6BhGbKC5qTxXrp622Ng9KiSg8H2ck+o60jI2N4e1vfzv+3//7f/jMZ2yyI6UULrjgApx11lk49thjAQCXX345FixYgCuuuAInn3zyBh3n1288GjvsOFyQkhHUBmtFhJBEnkjcdfShGFowZP5Aty17FVSu8PL//TkA4IAbbsIvD3+N+VNOFku+cQ1++5YjAGjnXh8v+ua1+P3bjyoeFNZX4CXf+/GE+931ou/ikQ8dZ77TbOORDx2H539h8g+2gIlB8rIOxewayTzvJMa5Txazw9+//Sgs+cY1eOh9b0KKtiEeeeGUGMXCkJvWX54yiobMJeqFmS8daSFrtVEbGtSDfSzQmDPL+B2YUM1CRSC5nptXuCMqObKaJF5N/VuniEghfxOtnHRM8bo8TaE6ljTRvriZM2l1MLztXH28VNePoRwbedFWQb4rSQqqDC2LsGj6HPOoDumSEJVL5CxKSCb2vI0/DEUJxUInFQPzbSlMCHFdJyPr1xQBk0mHAMA8ExrDQxD1GhrDs4A4RjbeQWN4CBKZMdWlrQQyV0haT2NgeMBM3mSutFLSyaByhbhZR2vlaqhcYXCHbZC12sjaGUb+/LReP5HmmZi19TYAzDKVS2RtTWKEiJCn0hAXrbbkiBEDkMiTIlljkkPUtdIik7R4TnvOtUzlNM7BrJQDrZMX/U6JmUVaQsizRt+RllNPPRVHHXUUDjnkEIe0PProo1i5ciUOO+wws2xgYADLli3DbbfdtsGkBQDGVrUwMJxBFqHM9CeKYoF9f3AD7jr60OJhrCXMPM3xswMOMs63L73uRvzy8NdgcF51BAJFH4k4QnNe0+yjiqxwkGlqQ0GDl6jX0GjUnLpGARPDT/BXhae+8CGIWGfNzDo6s2dWyOQUug4AqjmA9uoxvOib1wKwg3z7qTWoDQ0ak42jgqQ2s6dAkcuikMV5lWJSJgAg4km2EhtVAcBRbeJmA/logsacWUZ5IBgSNTKOdLyNuDmAxvAsk21UNGqmvUQM+LaUBp2+JyMtJ1spgULAyQeB2kWJFqWgaJ564aPiJo6jT5EUyNoJaoMVEVN5OVRVQmdDJRDZyYsBTgwNl/azNSEZHde5n4TQ5KQ4/7ipazaNr1pjU9m3M0RxhKydoTvS1c+rJIfKFeqz60jHUiStBFEcYXBeUyvBq9cZ35V0rPA1apASSCpLjrgRl9qmcoW0ICVi7gAiEUHAJS4UQamkQtqy/n1ZJ4FMKPFgZPan8lw7l+c2vN0ejyYVhZP5DBvgQ0Zcjb4iLd/61rfw61//GnfeeWfpt5UrVwIAFixY4CxfsGAB/vSnP/XcZ7fbRbdrOzt5g0tV5F3xHF2lVCiIOMafHjd/GrK3cty09AC8+u5flPxNfn7gyzEwdwD1pr78tcFayQy0KdBePYZIRKgPDWzyY21NuO8dR693nf/75Hu0I+tQE2gnxjzRXTsKlUsMbDPHOC5217h+EnFzAJ3V65B1MgzC1jvJkwwjjz6hiVA7Ra1ZRL/UazbfRBFRUWfmPvKNIWdIGoB9s4hMMiSjLcRN2x+a2w4jb2VGoSFzVdbpmtwVRDh4mKluY+IQHkMAmK9JZ/WIJludrjY1NQeQjmtHUtonRQkR6TKqSJEsLC+cyvMkM0nJ6LhxPIB0vOMoW1GaIWfOtoQ8zSBy97qQ2aDWbCBttdHYfr23vq9hMtWOjpsotO7aMag81wRxpIW01UV7TQdxg3zrdBRZnuRorWpB5grzZm+DtKN9UJJH1qK77SAG5g4wM45Cd0QTGlJWZC4RN2LzPU9ybRovJoZxsU6eSnTXdVEbLCJ7GrEhLj4k6zNEoOPigU0EKSr6K/0v4uaAUTUpfNr/vwTMHPQNaXn88cfxwQ9+ENdffz2azd65E6LINcUopUrLOFasWIFPfepTpeUyyXHAz36G25a9qjwL8CIMyWxEzPwne++PQ+69E1EscNuyV2FwXhO/PPw1eOl1NwIAXnn7rbjr6EMRxREGhjcfgRh/uq1nQVIh76STUg+e7SAfI3oA/v7tR6E+NIDG8JCR4B/50HGoFQO/TDOk4x2IwueDJGrtk9JFMjJezEbtjCdrtfWsU0Q6YycjIOOrxhDFEWrNmjN7bG47B1knQdpKC9+mSA/qsYBEZgbkPM1MGChXY+LmgDaL5DonUFQk6+qsHkEy0kKteJCTkyOpKHGszUHk4wUAIsmQU2SGEMaMFcUCWXFNKEw/HW9D1Oss821s/ICUlKaoIeVSMTNLzxcFsKHLbnp3HW6dMb8F41PkKUgAkOcSkSzUhcJXpj7UhCjMQ5RddmuFiAXyThetVaNIxxI05zURN2KMPjGGrJ2hMVTH2CrtXzT83OFCZUkMgZC5gijIgPY/iRE3BLojCfJUGnUmbsTojnQhGjFEHJmIIUArL9p0J4EGrClIWrORLPxmABiTkIQwfi4ElSugrtdRUjnRMuT0C9hcLSqXJvJIxJoQ07N8usqyTBeiOIaIy4rUhu6j39E3pOWuu+7CqlWrsO+++5pleZ7jZz/7GS688EI8+OCDALTisuOOO5p1Vq1aVVJfOM4880ycccYZ5vvIyAgWL14MlSsT9ZO1MyNpAkCeFpJlLJDLHCKOIFkgVtwQuGnpAag1a1riLGy9Pz/w5Xjl7bcW20ZsNrz5/hxCRHrWVI8xtKD/O/CmAvkNAQBiPbt74KRjUBusFz4fVoGL4tiYb8b+8hTSVqcIT9aDe2dNG521bTS3GTR+AHwA7o60zQOWHHbJfBMV/aQ+NKCLzLUSPdNMs8J8FCEZ6UIUBFgMDWgFop5CxbH2J2Bho7S/PMkwMG+O05a80zUz6+a2wMA2c4pMoKwKcuGvUy9SqevtEmPeQaOOqFBfkGqVgxOErJ0gZrPgrAirztr6GKQCGik/ZonDOso4VAJwyCRyaQkbhb2yejXc9ETExuYQyQ1JA2Bq3wA6u+yGu/DPfPz+7UchbsSanLW6aD3ZMmqIaAh01nSQJ9IoKQAw+sSY8WsRcYShHYb0s6sRa98UKRHX9TMlbmgn2qydIW4INIYaEI2iOGUcQ8QCUSMyhCYdS7W6lhcEpciSC8CY5AFLWPREUpaISxRHBeF1lW/bByLTn7Q5nkXhNWqFsqP7zAu++K1Ndv03BsGnRaNvzuBv//Zvcc899+A3v/mNee233354+9vfjt/85jd4/vOfj4ULF+KGG2yStSRJcMstt+Cggw7qud+BgQEMDw87L4IsHq4kaRLTV7nCLw9/DURDaK91EZk/jiokz1ff/QsAMDZgAIawAMDSq67Xx0hyE/63KUFh2XrAys0sI6AaIhborutqyboRoz7URFyvodZsoNZsODlWdvn816DyHMnoOEb/bw3aT48b3yGataVjSWHOyZy+RMfSfUgUA0cbWcf6DQBA3knRWdNB0tKDe3v1mJMUSxbkWJteUmOaon1lncyQZ5nkOgqu1TbRNESWAN1nKWkYj+whST0ZHTczVQBF2Klul0wohXrXvLJWG7LIqqur+7aNkmJmvFIVr6IgXZqbQYsGGElOuiaKz5qjSAmia0LExpxfke6dzGq0zFw/aVUonZK+yCmSZBj/zrlT71AzDEu+cY0etDsp1v3fiNMfNdHQikh3nVb34rr+noylSMdSrHumUyi3wpAdcsil/i2KdAwAzDPOEMPC1ARoIpKnOSP0hQITuyHueZIXgQ122KLnrmTP5qRQHwHt65InuXnOqkIV5+drzzvZKjLGbu3omzs0Z84cLFmyxHkNDQ1h2223xZIlS0zOlrPPPhtXXnklfv/73+Nd73oXZs2aheOOO279B/Dg/3H4d2MrbcTGyYuISxQLJwtunuRmdkDKze2vWVbss3g4bwal5YAbbirIlzTqT7YZyFK/Yq+v/gBxI0ZcEBbnQVkvC5R6MG5pez9g7OP0wIxiYQgHYEnrAycdg7hZN31JJxe0D3+S3bsjXeP0mLUzdNd1zWwY0OqfJjk6NXra6iJtaYk+T3I9oCSWCABAZ41WVXgYcJ5mhbRepC5nviwyl0hbFA3VhUxT5J0ukpEWkpFxQ3T8MO+syN0ii32TUimTHFk7dfph1k51IkVKJlb8f1wHXztAUe2aEgkp8nbQ/5X/Luq14lV35HJjLmiTyqVDtGd6VtwNxS8Pfw0AmBDlKrTXdJB2MsxeNBvNeU0MDDcQicj008FGjNHV4wUJ1/2CiI3v30dEgT/nZKJNR2krRdpKzTOS+jzdc02Uc0O6ATjKCuV3kUmu+7pRwSMb1ZRKs63MZUV/stmQqa/kSebUgZsJCHlaNPrGPDQZfPSjH0W73cYpp5yCNWvW4IADDsD111+/UTlagKLWA/N0p0HDh5IKtWYNB93yMwDAjfu81IRIk/2W/1EOvPEW3PqKV2JgWEc4yEK5IZ+XzQEa+AJ6Y+lV1+P3bz8KL/jit/Dge4/VD9BCjXj0w8cjGWkZn6AXXvjfuOdtR5oHatrq2lmeSYpVNg2RI63roFg85ItaVgISaWqdFzvFQJOnVgXsrOlA5gqzth1EXBcmwyj1QQoPrQ3WIAZjRHmEpJXq6uRSAoWKQiRCy+vrTHvJSTKuk4klMxEmnbVtPavOFWqDDef8JCNDSHWbRZG2XbJZL/k65CkLZ4YAzGTBKpm0TxrUCMYXQdpwV8G+U56YKqhcIod1dOaQo2uqNulbCBHht285AvVmzTzTqB9FcYTO6g66o5THR/uodNZ2bGRRoZA0GUGh605mcloeExE3RFNC19os+jP5p5BvTJpTMmVNggZFQUpsmLQhRbmCiJXpRwCgiokjX0bti+vCkCBAG5eQaMJPSiegVaHGECDi6r6ypRCJaYgemuEZnieDvj6Dm2++GRdccIH5HkURli9fjieeeAKdTge33HILlixZslH7plkvwGZ2Uock56me/R544y3OrI8UlKggKoB1CKOwvp/svT8ALY/mqTQyahUZmm689LobjXNbnkpn5h9QDXpA737x97HrRd+14bpp2lNKpn5Ds0cacPf9wQ1QucR+1/7UrEt9itSvpKXleN4fyAmRHt48r0XWzszMlJwkjbMhUzWydmYIgU60psyAkbVTdEfa6I50HdWjO6LVmu5IF+Or2/rhXqh1lEuGOwfnaW4ymVKBOREL1JoNo6qYc/JkeiJpNCO3Mr60BC5XTvvy1A+xttuQ+UlWEChToDHPtdlKysJ8VS6iSNlhx76x9dTqktIO6NZsU+RN6RR+KDWBuKZ9W8afbqO7LkHacjPERrH1J4kbrM6QdFUvDjIdyUIdkbl9pgJWOckLc45x0GXb8n5BfVxKO6l0+xAz69PzO8mNIzBl2qXf0k7mPI8f+dBx+ONpb6k8l1tf8Ur88u+O2LibsBEISovGVqW0TDfyJDd+KLctexVe9b/l4ocH3fIz/OyAg3QNjTjCLw9/jdMx8mKQod/JSXdgeECnGy2Ok4wluGHPfdFdl+Dv/noPrt5xCRKp8KYndRmCq3fU5KudS7x11X0bfU4vve5G3LbsVTj4V7dv9D6eTaBQ9N+//SgAYDO1cdS8WTtF8QAwkRNEemiQ4IQF0GZFTSasmTDtZEjHUhNdplUHALkdXPQ+iwd8yk0+HQwMNwxJoTBPIqhZO0MkukbpkLmCKsxX1neEojS0KmJ8YVj0Rp5SAi9SPaw6JAxpz01it5Q5IMsecyV/1s1hnXkLs6zjR2ZVKAGuWlkCYpLNMV8c+p/6D3Lt+Nw0yg2vxL014KXX3YjfvPG1DmFZ+8ja4rOAaMSQbT1458W1pWgh699n77soyLOuI2Tr/AD83pTvqVFphNA3FjB9Km6Iguhm3ja6TwsRmbxZgOus6xB+MynUDsA0keDw2wUUwRatrjazdjI8cNIx2OMrV+HB9x6LwW3nor16HQaGG+gmYeK3uRFISw8c8KPrHKdcMv34uGnpAUXeAAkUD9S4rlWUzppO4aMQFZ7zqghd1WGAMrel2cmPIYojfHuHvTAYC8QR8MNFL0IqJZrNGvJkaoRlfecSUI1fHPpqNIbq+h4yk48/2MnCaRfQ5EBKhYgGc1mtpJEZxwwCxf6TVgKVK8SNGI2hOmJY5cbMViHN9nFDGHmdbPgUbopiW6pfRcvoYU4DPBETykgKAGmqB4a4WdODSBwhrsdmRp6nEo2hurOfPIclQWwGTOnaAWl8DoxJp3CypEFI0w8LbmJwI0i4gqKAuPB1ySXioto1oB2ZjXJKTre5cM1LIoeMdWK7GssWTAUJ11z0Mcx73+fW1136BumY7mOjT4zpNPpKIa4p44RrQunJb88b3HVGYU1UNZG0SotvhuhFWAzxlPp4semv0pgLydwJWEJiVMN6DAFpVB/qU1XJ6rh5nyelo/ZQW5Kx1OyDnH8B4IkVp+rrVtTmqg3WEPdQlDYFIkbMprKPfkf/a0UzBDKRjnTvOJ2xmYlvUjBSv9CDweC8Jhpex4onyDMTsOlBEjLN/LhEPfV9W1JDZiA/koNIkv8bQZs6VEGE7cBOTodUIZeDz0plj/1Se+JGDNGIjVojGrEjNVMYqasC6Rmzbr8sZP9qWZ8fS0prLqLrQ+0k5Ox/ZqOOVKEclf9nfFte3dc3YdBvJtMwO5etTW1RhYPq+NNtdEcTE+Xj9wMKLuCIvGWCmdKrEFX8LhgZ8h13q5QPv+0U2cnh78dXJSv7OCPqdlJQ/B9z+5/M2hl2PPPLhYN7x/Tv9bV1OkEq1lRf/Y6gtEwRr777F/j5gS9H0rJ5NayfggSYXJ20UtSbtcKRUcuchfAPQNuFZ203C2knQ3c0QaPIeYBMlf6QAZsHPzvgINQLJYGcYevNGmrNigiiXJkia3maT8qxevzpcXTWdFBr1ky0EhWLixuR8XMB9IN3YHjARhnlyjgt5qlOax7FMPkxiKjk0trx80YMIGNZRWHOjXJsAJpEkORPpoFkLMGs7QZ1jaCK2Tf3tckTHckh4pppH/1OSiSX6rk6QsePPJkfgAmj5eYqWk4wjpWwRIrvm44XxbRcMBJXmOhGxqGK+k68BMPWgNuWvQqNoTrW/mkdRtd10RBaCY69gV2reQDyvLi+ZWJKyiJFDgHoaf4jcF9BbiKyBEmadP1RLoG6cBQCIuK1wZozceAJPmWuSq3gifD8fssVGlKQ/H0DQNpKda6mwr/qxd/7H2Du3AnPN2B6sfX8E2cAolggK8w9NMOMGzr5GP0B8zQ3GR/JH8EOAALdka6TJfe1f/g1AOC6Fyzd/CcUoCNumjWmAChQQiw/ykTlEkkrhxBRJWGh5IK/PPw1xlzTelKTloG5DdSaNXPvTdbQJDfpz0UcIWklaAxZX5q4HiOux8aJMM6VKS9BD2lSOaJYmhkqJRGrO+fmOrVGcWQiTJJWisZsfdzO2rbxNSBfAsqDYcw7THanWSyPAOGpAAA7kJGvAm8PDYJ+EjEnSglkmrBO7xKaqLiViO390KHo0hQ9tcpRDFkUjQRgMw3nOdZe/C/Y5r1nl+5tPyEq/JTWru2gISLUB2JzP8kHyofMFZDnhsAa/yW4qglgw40J3K8F0PJ+5K0jDBGX3jK69xS6bv2XqJ1RHAGyMEFSlt3CTAnYzLlEWHh2XT/KiCYMZKoUIoIEUC/6PqUqIFDZl82BSMSIxBQz4k5x+5mAQFqmiJv3OxD1IvOtynOoYgYscwWp9GxRgOzoOmRUNLTSoqQdVEQcmRmoiKPCT0CZaKMNqRQdMH149d2/wK2veKUZCPl9oBpBVFuKHF99Z9vblr0KB93yM7zy9ltx3QuWotas6YdoI9b5LRpEYqUJQ9aDhDIkWA/COrqDQoQBrVqIol1JKzURQFq5EUDh10GmD10jSOd9qQ/VUW/WjMlLNKyPBy9iRyaqxlADyZg+BhE3gEf+KOTMRGOSh6XS5OKIYoGYKyyGTLhkh8M4xLJBD7AzZ+6jw81jOgyXkzedcdVXE6igZZQLnUlXFGYCUfhKFPeZCo4++uHjJ11FeaaB0jGs/fMIcgXUhTD3jogxNxfyaxU3yn4qMsmhYjGhP4tN9GZJqK+C+JGadM9EoVyTIm1D6HVNogZc3yaVaHMmORAToclTlxBT/yZTkBCuUsf7ctyI11vEdrNAxPo11X30OQJpmSL07DrRs9x6jLhwhnTXUUAxaxCFtE2w8miREbWYKTrbS4l0LHipbynIXOdzsBk8pSEHv33LEcYUInOJRrOBu485rDQjA4Ab9twX7VaCeDzFwJwG6rC+JXrWWoRqOk6nVomjB2meSERFaKasx4bAiDhCnnE7f63wXbA+MRRKCtgHf57khextzV7c6VUTaWHCRXleDwBO6DyfDdPsXeaSzeSt82MkCufLopYXtc+gEduBRhbh4yKyM2ipAMQQQJG6n5t5XKdgginKx0DrRsLm4REAZCxQa+gaRDngVEGmaJJ+wk/23h9ZJ8O6VS20c4XZNW3uyTOJuCYc0sfvLwclSgS4cmKTuvEEc0blS3PTh2WuQJefL/PNfZTzxa/rZn4v+lleF4zoUFRYZFQ9CpIg3yxzHoBjfgRQUlN1aLYs9ZeALYtAWqaIV9/9C/xo5xcD0H9YcjpUuUJcoweoRCTsYEC5Jhxpsi7M4ELr8dwFnVwiiC1bBq+8/Vbc/ppliOsxcyTVhCLrZEjGtBlhcF4T+/5Al5G4521H4kXfvBa3LXsVAO0bE9djNOo6ioxHZ5CTYFSP7cMyV0YdAehBzMmsgAQg8wyi6Cd5IiEipoBI7atiIy5yUxqAkh/miU2fTgXvyCcEgAl3Nk6KUhUJx+wAwImAiAXy3Jp+rNOkcgYp+lylgNA1yItZPKFKjaEQavqv1AZdnwYd2WJn95Eo+77oqymAOoypCHXo4o/1mikQmbUTo7qoXOL+E163WaqzTwdu2HNfyFxhbCxBO5eYXROoD2iztYgi47+SZ7oPAYBUynwGXJJShSoTEakWtIXKFVSsw4+pj+v9xm5G44LEU00jCqPm/lRAYQ6UudOnKKqN8q3Y/xQzPUEgB4tqS63pkhDFEV7+vz/f4Gu9ySCEfk11H32OQFqmAUc89ltcveMSiEZeDGzK+QPwJEw8E2ieuBEMToQEmx0DQENEyFVwxt1SiBt6MDf5IaBl5fGnx5EnUqc5jwV+88bX4iXf+zHGn27jpqUHmHtP0TKN2XXIXBVFOF3zStwQyDpUBsB9B4BOJ0Nd6NmxHjj0AyhL8tK6RKz0cuY7IiSLFJFufaMiyReZVniODJ4LJhJuDg6tALlOtYAeUNJUK0LcaZJyZpj1mbpIhgMze4aNBqLBjwYgXSBR70rlCjlyc631TaOQZ885kynkvCimTkinTR2iqIuEVgdSFo6hoKKAteL69I/6KXOFtWs70KJvZJz8KRdLKiVi5T5jRFROsMn3Z++RNdnxrLi0nSb68BQab4JW3DtuqiI/GlLCACCKFZSk0iluEUUJm2sIKLLjFg7ZMpeQbRZZ1oAxJfG28s8zzSSvC36GKs+BtEwTXvfE783nG/bc1wxEhIHhAYe1/2Tv/R1JlQ84tJxC7eKGgIgi5xgBmx95koOG5hxF/ZSChHZHEjRmN7DvD24CALSebBmzSWOoXmyvc5rUh2KM/XXMJNEi6Lwqblp6SYNIIqGf4RJNmuvmuSPp6zwbgjlJlh1r6bOejerkb4ZQpHYwihs26gYAG1B0NIefM8ZcI5YSnSqg64FD5w9zkpKBpXsvtqF8R4AmMHYAKtZjcr9Jzsj+LzyvRpS7igyZ2rjaos1T7jUHoKtDCwFZYRqIiiy//UJarnvBUrRbCRoiwlgmTUoFuvaplIij8qSI+7gQjHNsQVKlUohhlRqgrMTYPgXjtK1i/5q7W5GqSKH0RH4oqIEmgdqhm/qoVSgBnYen1oRjrq/KU+L/NwDtK+b7pgXMDPS/VjRDYb3eo8o8BYfceyde+4dfGzNQ1snMTJcGAhq0OKEJ2DKgaCAa8LN2VqQZV/YeMmWivaaDdhGqbAbmhnAGgFRKdDoZ0m51wUzjVKr0TJgGm1RK5Jl+8dmqiNwoDtoHhQmbB32am7brbYs8L0KUBimefIuQpzYnEc+Z4SZKdPtsr6RWbr4OXu3Z7pdIijmWUaFyQ1T8/5f5/0j9/7F+R4Vzc+pOKvzt8zSDaNQhhDDKiklUV+RsiRsxHjjpmMrzmim4Yc99kbUztHOFdalE2yMgSZprMuwpLOTjApQzzBpipxRypXRfZDmMzPVOyrmMuNrGCSwVPaREi5Q/xT8+J8mUn4jKBqQdUsJiY07iCqHexvVb8UHPaooWmlEgR9ypvvocQWnZBDj0/rtw3QuWOgNIrzo/hz98NwDgRzu/GIqNXUc89lsAwJUL90auFN6w8t5N1+CASUHEwmRcTTuZUyOIwpF/fuDL0VnbQZ7pLMaNobomo8Wz0/gpKUW1ABFHbk4M2h8hkQqDBQmOI6ohWGxc+CCQIsMfSVEsEMd2QCY5PRICqnBcjRvCMVOaMFKhH94x4hIBofOIctd5nMv6MZvNV82MfHLFCyUawg94qgiT+GFNA7zYn2TRSNWh3BIq1wUkyXTnRzBRG4RgkUOFg27WSZCOtIr1dMQg4cqFe8+4/2nWzpBKiXZxDWbXuI+Q7VPtXGEwjhAXJiGrZFiCUgRVGXMSIZEKjUwiVwr1wszpww9xBnQfyNqZ6bt5pgkTYjf7MXfs5Qp23LB+gDwbtXEC5mZB6pd1rebxnD1cZYnrWnlsbjO4wdd6k0OIaYge6n+dIpCWTQQiI5RfxS825oNIyjWL98FRj//OLJ9pD8FnO8zsn1Vv1gUyheNgHdeEeYjSMpr9Z+3MmdnmhnAUA0VGA6v9bSJ/Jun9xuVzKmRHs1FeFwaAmamakNXiO0UTAYBKbQSH45fABhY3RFZCMXMSjes8VJujKi+IaZ9URZSRrFR9iLxIWLOSDcUu1mP1aShpXVwMgBRdFAlbhoPISDLaQtwcMCqLynN9rWJRFITUpjCKJMoV8N0Fe5t6YTMBnU6Gdak2Lc6tVw9Y2s9F+7oYJ1xStpgzrt/PAMrWrdhnIO3mjgOvj4gRIlJrCP52jh8TW6bJi3XYBqzZoMqkpbfTpk1yGtf71ASG8rFQgseZGDEUqjxrBNKyiXH4w3fjhj33xaH33zWp9TlhCZgZuHm/AxHXBRqzbSFCbjvns1KZp5CJdriNhDDRNyajZmEKIkneL9FgnBu9AYJL+HEUme34PuiBX1V3BQALOxZs5psbp2ARRybrb55Y0mIJF0vmRagTkbG1i3QIsvUz8eGGutoSBP46ZnbNyEpcF0bFEax0QGV4LjnrOtFGCqj760vkcNUfmUskI22ITmLMQ3p7WVzLFDJXqNdtzZ3N7Sh/zeJ9UBusIR1LkUpZOcFp56oIb2b5hQozIvWHXGklz3e81UpbsV1myQtXWWh/Prn2+zYnI1X3ivZRZbKpcpDVyTqVUWooAmpDQixLfU7Y8886E08yA7YcAmnZDJgsYdmUuHjeHngmyfGx1kNbuil9B6qIfftrlkHEAmlh6qPZXNbWfin0oBZRhIFhHW3EFZmqhzXAzD0sx0o7l85DP5F6RkpRZImEU6OKBgWbhZk5OkrmO5BJADnqAzq/i3HiTfIihNpGVCRjqUmZT2atSAjjQEsF7Xh16Co/CAI3FfFrUvZHkSYSxE8Jb5x16dqxcGsnfLzH4EVOt65aA5Mp18za6TjF2BXlNqRbX1MbcUVoiAhJj8KYmwLtJEeTzrW4JD/a+cVGtSXkSiFXEXKl2zhY3PdUSmOizJVN0UBwQotzz5ynyFSpSgSciEtDVBMarujw7apqrPUiMZQ9t0r98ZMOWkVUGDNkPEEUjQ6M6K3+bTFE0+CTEvW/T0v/a0VbOa5ZvM+U9/G17fY0n8+bvduU9/dsRdbOIItSDOQECGgJXpMKTS6kouJ9VCTQSu0APejdz7Rt7snlVbP3XGlSQwMkreOG2dsHtsytk21cE47pikw2ohGbtpIzJD9HgnZu1A7jNHCQk6ufZ8NHWWGRDtHgL2mUmiLhXk6VofkxWBg2y8XhF03kzptcMaEXtUfnFZG2dljhDFxVGJOyGmdtXRvqvnccjTesvBdxFOGK7fcqrT8VXL3jEly5cG9cveMS53mQSJ2/SeV64L9m8T7odDLn/w6AkQIrRCQUuRjZ38m5mxIUUv/1AwGIiJCFkPqhS2JsfwZQ6tNVZKPKkVyw/gFoBdL8j4q8RJawW6LhJ/gErEoWm2SMbpVv4+PTrGPJN64pbb/FERxxAQTSMuMxHeai45++30QNhFwvG488leis7Zi6UibRnAIGGzF7aNukWgSXsHj7dQgLKn8HaLCwyxOpDFmSqrqKLYcw9vrywABo2Z9ept25W9QuYmnfKVLEvUa5MZ0ZJ0kacAoyQg7MNiLIzYZK37lqYhPmKeddry8NYfHBI5AIyiE7PEqmvD0NalTlWeYSnbXjSFqpcVam637P247Em568F8c9dV9pPxuLKxfube5zIhWSNMfVOy4xxIgiyyiKh8xBBK1kaIWF+o+IuXmRERl2HOpPsti/9Iixr6rwrucSFPe3OIpQF8JxHgfcnDB0HDIDEVExEXLGDCrMepykU8I6/n8QcYRa4RjPnXw5aJ2Z6M+ypfCzn/0MRx99NBYtWoQoinDVVVc5vyulsHz5cixatAiDg4M4+OCDce+9m9anK9ydPsB0FEvsNSAGTB5ZO0NSlFPIC7NP2s3NQ78uhBkcqF4P4PqnkJRe9Z0++8SGz1gJ+ji0D9cPhjv9kmqRFWn/fR8QcgxOx9JS4jGTlVdK57N1hLQmEh7myme5nLzQfjiZ4QTHnx3bKJHYRBFRWQFSRbgyQp/93DHcSThP81J9I79ysVku7LXKkxx5R9/7ZEz7LZlyBJ4C9LXt9sSVC/fGVHH1jktKZID3FyKstE4ilaPAAXrCQmR6LNNRROQozsHNRNr8aI9B/U9SeLNSlf2Ut4X/RpeXzEIUtSYYgSFwAksqCx2LqywEURDaqqKNQDUR7QXRiFEbrGPXi7476W02J2jSMNXXhqDVauHFL34xLrzwwsrfzz33XJx//vm48MILceedd2LhwoU49NBDMTo6Oh2nXIng09IHOPzhu/HdBTr0+a2rpjaLS5XCpwdfiE+0/zhNrXt2gJIBUnItAYm0m6OdSwzVCvUijowPBJezE6lMqDJ91r4p1qZP/ir0mT/o48h9UPPfqnwJYrCssIXzrA5xbmiTRq6gkgyRl6cjrsjPIeE6GpvEdXGErJOZ8gJuojxhGknqiml7sQqvR2OuF0UceUX3eKQSOQSbMO7YzX1D6/BQaOu8qZP5R97gZqODrJOnHgSFo6To9YWpcUS5SSinB29HO1e4Yvu9pqS6jBVmGt4vAEtiE6mMX1NemAx7KXWW7OjzSaU02/tEugrUb30XE+u/Uk5Ox/sphzHDFKlQKIqIQqrJsTYvVBZOfkiREez+l/Zbj0t9AtDqXNbJTJZch8CLaGYURZwIW6Bg4hFHHIEjjjii8jelFC644AKcddZZOPbYYwEAl19+ORYsWIArrrgCJ5988tTa2gNBaekT0KxqY3HG6B/0nx6auPxr8wXT1ratHTfsua9RGCLj9CnMQB/Fkak5BVi7Ow/n5GoJRf/wGa3vA+Cj18DCCQufYSeeeQqAM4ON4ghj3cwlLBHLeFrAd6yNinT6eSJNkj3H/JPbEFQTNpsrpIU64S+n7xEjLOVjS2NW8k1JqofPCbVZZywu++bwa+Jvr0lY7pidTPXr1EaDdUd0oVSKKKNB7/in7zcKxcbism33NKoJ7WddKjGWWSWFEwi6/3Q/L5y7O/vNjepZk2RmP+3cbsefMbnXf/3+x8kSR1WEG/fVksr6TBHhJJJCpqhcaV+dTq7Pl5N4Ak+MmDNndz/cma/DzUGkjNkii8+uoXBkZMR5dbvdDd7Ho48+ipUrV+Kwww4zywYGBrBs2TLcdttt09lcB8+uO9XHqJrlbPg+rD26HkVYPvhC89v5c4KDbi/wwdhkRU20QtHwMr364aDcZ4DPGGnAoAcy9yuY2D/AHVh8VcZGZRQqT1quymyTinGHSiJgrhJhnTFz67jK/By4oqS8gYNMZOQbYRx22Qn6A4wpOColG5hUyXzk5oUpmwFoeVynytxuLhluIiIHZPObMXtJZ3CTuTT5lsgpW+VKV3kfS3D3Mfbh7TtUbwyob5HZR6sp1G9cB1ufPHDCxJ1taXtOcLipp8rBls7H75tuZBB3yI2c7fi23FGdMugC1SZU39zlqywcjpN3j3pu9ncFqmVlzqUiId6MAyWXm9JLn+fixYsxd+5c81qxYsUGN2flypUAgAULFjjLFyxYYH7bFOiDOxXAccn8PTZ624+M/cF8piJnnxvaFRfO3R0NEYXIogmgcuXM/JM0Nw9TfwAliEK9qArl9JURvayXz4u/DlNUvMGJk4cqp18Oahvtz3eGpHNy061LZ9buw/clIcJEZMr62tioqongOwL3OhafKRPRqHLO5b/5cH1binvKHH/Jl4Zn2yVQCYNfHfm3AIATn3kAgFZMNgZEWDiZJVT3kfWbd/T+qmc+vW5DlZLiE5cqrG+CVfVfoX1PZnLGFUFfHZz4uG70mcqL3D89chvNJFDBxKm+AODxxx/HunXrzOvMM8/c+Hb5uaaUKi2bTgSflj5BVUGzjYGEmxtB26ojTMfMcGsFVyjaraTSlENSuu9nwtUPgMiKVVRolszNRVY5cf0UBtnT3N43+5l+1gXwbPtpdmr9QKLCodLtCyYCw/ioFG1ObPQID7OOowhx4YuQM4k/ypUpVki+CnRMSgYW1wQrkWfzrDjEgWXw1aUBet8j4+MgdDI6CWvS8e8j/cbDn6XJrcvX1xlzyRFYFeaFuBFDjSR6wCsKOMpEIo+1IvWTvffHIffeaa7TxkDnfNGf4wgYy2y/sERW96GxTKsnvqJHoPvMnbd7gfbrP294f6N9WZXQNRVVHYObMWk9P/stz65LOW8GY+Ecw/WD6u1kW6XGcJ+luG6XPxsLIw4PD2N4eHhK+1i4cCEArbjsuOOOZvmqVatK6st0IigtfYI3PXlvKeR1Y0EPnlSRrTzHaeseBABctM3GKzlbMyiniJbXi3wPnkpRhfpArEN22YOd5PleTo12PWkIDv3OByYiTtQm33zEj2F8cYRAXI8hosghTvoclSEsqZTGVEOErCqPDGClfXLuTFLtP0Df08IfiHwV2p6PiapQP4xpiDnl+hEilYnHPAWEcnFQsriq41o/pSqVSZkikI45oa7NaHFdoN6kzMGyVGOslxKxPnAHV3r5v+nPtj/p49n7SaqsJRnWXMnf/eOSWYb2W+VPZ/uObRcn27ydvqM4gUcDSbYuJ/yDsXvu3A/KX2bIuRAOAeaKH1dk+kFdcSDE9LymCbvssgsWLlyIG264wSxLkgS33HILDjrooGk7jo+gtPQRaEC6aJs98L61D2z0PvS7laA7zBl0LJO4aJs9zINudk0UMx6bUTOOnj01ka5ZvI8ZKLN2VnrQ5wpoMH8R86AuQkpFI4Ysag3ZqA87YPAHslvHpcpPQWcZpePY3/nMOHKOQSnb6YGus9jmju8NDWCdXKLRtX0BUiJWvn+C/uwPoly1yZV2BB7LpBl4DKGRVtlxM+ha1cUkikMR9soy+hIou67zzvwaBICoYe8LNxMJz2/HXEVv/6ZwImCcPWtFNlnukM1JF6/0Tdfmkvl7GHPRZMHJZDkqJ2Kkw/YXAqkU7Vzh4nl7lBQSWp+T3CoyQySZKyhcmePn6LbJ7R/caXeyky76L/BjcX8WUwCxETPFbuLaOtycJBoUwdRHxGULRA+NjY3hj3+0kaaPPvoofvOb32D+/Pl43vOeh9NPPx1nn302dt11V+y66644++yzMWvWLBx33HFTa+cECEpLH4FmzlOJSvi3zsNmAKX9LGfhzzzJGc3gE6nL2vPkU9Od9XMmo9PJcMRjv8VYl2q1lH1SuCNhvcg+S3kmeFgxR0NYp9yqe8pNPjSDpgd/1cOf1Be6hxTCzBOopZ0M3XUJnklyL2OpzbLLnSf5TLvXrJyH4Prb8nb523OnV7tMGnXDjxaiPDHkNOlHEVVm4W1YgiJiYQYrcsbl0Uc2L4wlJDx6Km4IkwVXl2jQjsVpR2fFTVqpaaOPi+dtuILpK2eAq6RYAul+J5DTLZGN09Y96PQf2nciYd57PVt43+vVTr1eBJ9IWYfxqIL09zZL85paVUomD3vu5aDLk8/Rf7LWrKE5PIDGUAOztp2B1Zx7IBLxtLw2BL/61a+wdOlSLF26FABwxhlnYOnSpfjEJz4BAPjoRz+K008/Haeccgr2228//OUvf8H111+POXPmTPv5EwJp6SNQoqhEKnxuaNeN3s85ySMAgLO7D1fma6EkVID7oPKjDLZ2/HDRi5CkuVGVfHJBAwhl6tTL7Gyfom58iZ3ICvdJ4eSBjmWPEzn3wG8D3846M9oQZgAm8Vs6lqKV5Wx9ux0dl5sFfCLiO+H6pMbO2iOHdFFbuamDzEa9QDlenDTuxedqnwWbQ4ay1QIwVXv1wCVMJFCe2ERzPKV/r7bQe9axUS+aXElHZckTiRv23NeoK3S+PAx5faiOyqn2V/GVD61uiVJY8oVzdzdmRL6c9s33yT8nvV1HvHbY4/P9+H2MSJRr5rLffYLSq46U73zLVRbuh8ark1PCQNGI0Zg9Q9P1zyAcfPDBUEqVXpdddhkA7YS7fPlyPPHEE+h0OrjllluwZMmSTdqmYB7qM9DDYTIPkonw+fSR0rKzxnUxxc8N7eo8eOJIO4HyMEkA+PYOe0052d1MxTWL9zGJ4Qg0CHMTR66AmA0wcVSoLlkxqCfuIEHmNZ+o0IPcOjhGZpCvUimqBgla7qyXSESxTclOvgq94JMn149GoWEqGldvx50m3QiYshMobzfPfktQ/CRRzu9SBWs+EMyPISr5ONB73IiNiUdKBQGJPIExDXHo7Wy9JCJBYlAToe5IYko8JONKk16Jwi9j8qYRAEXiN/3Z9Q1RTn9yyYYCYBdY0uKqXv56tJx/9vsBJ6DcV8oS8bJvizuxiZz+6vd99xxcUC0kkcNJdgiAqWh2mZtbSKJW+BxRqDOgfZJqg8wbtx8QTYNPStT/OkUgLX0GLfda34dNgY+1HsIXh/Ws0JejaSav1YL+/wNU4cqFe5sHKz2UL5m/B2bXhEMm+MxQerNGihrKlcRgrP06Zhf/tnbu+pMAMD4oNLi5EUjlNvaYfJZ+S6UEpD/4lFOslwcfVSZnfuZdL8KkTErs/qoqUvup5IEyWeBVq31Vhpx0Za4Qx73DXqvUHL/+jIkskQqQRaVn6OghUmPyFMbp1q+TUxusIetk6KzR91aTBJuDR/uEbdh/lgZ0cqKldyKd/HoPxpGzPFcwfm/aud6NViMySmSGsu7q45ZNUtwfye//1FZqH+2DlvO26u/rvw5VtYmA6qggfxmv8hyxoogSWmGrNWpFRFh/Pb82xrxTtY9+R3/dtQB8cORBM0vflFltuZTvmifsOonUjn5EcPodV2y/F67Yfi8n+RYHDdKz2WAbRzB5SOKIcrNEzjZUz8cWVeRmlGpp3jcb0bF8k4tvquu1jn63ZKNqduuag8rb83Oi7VxTUPW5V4Xr04Dk59jgGWp50TwO8hnxBx0+eFESO8rVQuYbnuXW+KUk5YrAQth2UTZVUnmEKA+cgK78XJ9dRxRHRiGbXRMYjIVJCLch0XlWcYuYahUZtY6D35P3rnkAubJZcd+39gHHn4QTCnrxRG5Vqp6fPZdvzz/7/ZubE6v22+u8AevL4puLuCN0L1jCoss3UNFNetWHmogbYc7ejwikpQ+RK4UpWofWi9PWPYjB2HUE5bOmOIqKFNuaSBE2xuFwfZiK/85kcdm2exq7On8BugBeHEVoxgLDs+qOQpArd7CUSqE+EJuZYkNQkbjigVlhyuGzUD9/C6FKxeDg7S1Hm9hBw/crqMrAWzWYVEWw+OSnqn2cKPn5avJM+5Ac/vDdZjkRA/JbqSp852c99eEWcrQOs3nq+tDIXCHtZJBJMagV2XO5k66UyjFZUcFFW6rA3WdjqA4RR2jMqqMhImw7r4m4JrAundgsVwU/1BmwJNdOKFzzTxxFhqxw0+YHRx40pTyAsk8Jrc99mLT/i58t11Vo/P1V+T35x+Fkpwqxp7LEjXK9KMCNJuLg9aT0dxspFMWRIaQvvPC/ezdiJmIaM+L2M/rmDFasWIH9998fc+bMwQ477IBjjjkGDz74oLPOliiTvbVCD9QTz4boIceVlg19MFfhs7M0STl/zm44b/ZuzkA/VfgZSi/bdk9zrnwA91WHXOnokfpQA+0kdx7IMqeaKfa7zuliFQN68Po+Ij58x9bEM+1UhZzSb7S9r4rxWa+v3viDEbXLnSG7pi9al/uv8O05+P55Tg4iaEma4+odl+iIocJ3Ic+kTXTH+hPlyjHfJQ1Kka1j45ESSsVP0Ui+qmJ8YEQRXSIiq8ZItxQBFUik9PNcybFtVBDF4NgQ7qA6kUnPR6/cJvSbNjcKzK1bIszfT1v3oMlyff6c3UyZjolIM1fKuFpC65Dq6ocw66gjN1+Mfyx+LlUkxgdlZ+Y+K6SeRLFArVmrJCwcUSwch2wAZvKwIdWfZwxmWJ6WLYW+OYNbbrkFp556Ku644w7ccMMNyLIMhx12GFqtlllnS5TJ3hL4WOuhyofZdOG6FyzFIJNf/dkeUDY52OVTa9eni3pIvBZS1fE3Bl/bThOWS+bvga9tZ8kKt+cD5ZkgEZdOJ0N3pOsUssuV6zORK52jZF0nw7pUz1Qp4VXWzjz1pHpAI6WFoI9l22G/l8+RkxM/Aoif20Tny5f7n6vCnyudJycwL7mkSH+nPC5EbEiF8VP9W6LgmYxYUUUCfadonyiOinT8WnURhboiKkKo8yRHOpYiaaXojiTGRMQL7xEZojYJFnorYh1uTudQpZqsD3GRAJBDO+hGeOuq+/CmJ+/Fm568F+9afX/pGnMzFL9fXBUFdGkPTka0umr9Vvzty8qLv6xMVjh6ERd+zgCc66i/C6OUECIhjImQVDJaP64LxHWh73di62/VmzXUh+rIEzefTkD/oG+Metddd53z/dJLL8UOO+yAu+66C6961au2WJnsLYWxTDq+FdOJZDwtbPLa4ZebDHrZ0i+cu/uEku9kUZ416tfGJOjiIIXF+nz4vhdArmwSLrs8Mm1IpELSLScPI5WF9k/+Afp3mvHnRep8V1bnDr/8NyIpvJ2UXM4oP5F10KRjcZ8C7Uxbvha+qc+ei+907a7jKy687VXmKn5t+TLePp74jM7RXJtiX1QaQOe9KUf1ADzE1So00o60AIBaYeYhvxkJgUjYBP4ql0g7WUlBUblEDj0gEmHhJQJoQNTHF6b0QG1QqwFxQ6DR2bCIPyINXLnkpJWDkkHq7crmJNrF54Z2xcdaD+GMUV2D7Pw5u+HCubvDTWpIn+0ybnry/ZmqFLYqNbDX88Nta/lHbuapKvEQNwTypPituOeUZ0dJZco6INb3KWmlqA/VJzQvzlTw2kFT2Ue/o2+UFh/r1q0DAMyfPx/AxpfJ7na7pTLd/QCa8X6otsu07vfKhXsbWzaHaz7Q7/5svcqJb6rgzsDTCe4AW/XA7yXP00ySZqY2PbqVxvWMVZiIEaq5w2ej1Aa7XzeRGw8v9wd1PpvlPke2fe5+yyae3hJ9WUWxx/SX+2qbT3r8vDb+Mn7d+P74Nn6ODp5ILCqS+JXT72vVhQ9MNGu3Kd8LJ9tU35u0k5nP3ITkOwqb1P5FxWnH/MQS1dG2sjAX6cgzTBrHP32/Ib6+n8hY5g64VWZc3zlbv7sNIPJS5cfk+s3Yd5fU2v+Ndjh2nX1dU6Xy9m/rnVWpLta3SZp7bn2OpEnwVxVRpquJF4RTqoLASmPeS1sp0laCH+/2N6XjzmhM2Z9lGjLqzgD0JWlRSuGMM87AK17xCpPIZmPLZK9YscIp0b148eJN1/BpBj3cp5O4DA7pKnljmQQfZPkLqJ6F93oATRbkcOs6/+r9tXO10VFKvlR+/NP3m/wynGzwdei9F8FwI6tcR0gCN7HxAoU+/OvqOgPr5b6TpLt9OeFf1Xlx+AnAJoLrZMkJlI0e4udC2/h+Nr45wT/fOAKasUCudJmIPKtOPkeDF2Bzt/DPVDOJSA0nNtY50/pKZIUzLpEVf8Dj65ucLyIy6+WpRFaQHr4u35Y7zU42yZzvH0Zf37vmgcrl9rty7g2PODp/zm747Kxdja9LInWm3A+OPFhkzLURS6SC+QQGqHYG5v3V74/+hKCKKAE2Yog72ZoyCSwZYV4k9CPySI7bpHLR9Td+SB39SloJxp5sobuui9f+4deTug8zBoG0AOhT0nLaaafhd7/7Hb75zW+WftvQMtlnnnmmU6L78ccfn/b2bgpQ9dONsZVPhKydeRlOy9EDvoljOvDZWbt6M3l3QOyV6n4yqHIqvWL7vSacnfq2dx72XY7ocL+XnV2Vsx9/5ssVmmr/ofLg5S8jP5eq7LR8G35evoLib2Pb3luJ8dW3alJVOqUK85z232hlehC6cuHe4M67gFVZaFCilPlVxfM4RCM22YkBGIdcXjOIZu15qlWatJPZUgJeOQGCT4Ck8XVRxtdCeo6/NPBPJvT5vWseKEKlq0PRNwTcLMoVEf8/RYVTAdvHODknkCOwX9CQb9dLHV3f86PaCVuVVDDKYEx9wKhozNk0p8ixRBry0lnbQdrJcPN+B1Y3IGBGo+9Iy/vf/35cffXVuOmmm/Dc5z7XLOdlsjnWVyZ7YGDAlOmejnLdmwvkMDedhOXqHZd4Kd6ViQrgknTVg3M6zEI0265yUKXBcGPDn33TFe23V14K+o2O7Yd40nrUZlJVKOOsVWgmr2jQgGKleNe/hz/s+f4s+bDqRXnfvN29z8WPmFofqsiKT3rs7+6x+Yuf56A3momIz7qtksLVFIBlQi1IjVY/SD3JzeycKzJUCJGbd/I0NxFCeZojaaUmaojakHXoMyNDues0TBWzs3bmFI8EbL2g9YH6UiIxoU+Xb0KtSkxI11pPeGy/9P9TvYqx8v3z6tP+MfzjVf3W6z83Efj15SZBIi5KSodAyiQ39b+087W+r911CcaeGFtv9NFMAzkeT/XV7+ibM1BK4bTTTsP3v/993HjjjdhlF9cksqXKZG8p/FvnYfM5jiL8c+P5U96n62+gH5btXGIsc4slVg1mU/n/U4hzr326ZGPDD0SzR1IJLpm/R4VJyB9M7Wz0xGceKCI0yuaXcp4T9zdaRqrYRNdpIpLQe9ZaVjeq2tZr+6r2uKYcux53SqbjWNNOVLGtcq6HqzaVyRwnrLQO5XYh/waubsT1mIXCWsJi6wNJU7+IfsvT3KyTp0VkkZRGZck6WWUeGKPuFKSHSEvWyXT6/mI/5AhaG7SZc9NubqJ+KOlcIsvh91X44IguckhEwjcN6SrO7v2w15LfMx0GTf+FwTjC3LrA9gMx5hbmtovn7YFL5u9h9hlHkTk+v0dV8El2lXNulZLnO8XTNa4yC9K9zhPp+CcR6J7SZ1No08ul08kl1j3TKVXknvGIpsE0FPW/eahvoodOPfVUXHHFFfif//kfzJkzxygqc+fOxeDgIKIo2iJlsrck9AOqt314Q6DNJa5JRJMWPhhO1JaNO64/y+MDPIc/YG4suCxO+/KPNZF6RYMPJwNETmhgplILdH/885ioDg03y/EBh/sa+Pep134o1XquIvDokN6kU6/H22BRvv50r/i52XNQzuDFz5cKRvLtfcJCkEo5xKW6UKJvtlG2eCLbjmbqURxBJZrUZLlCo8hiKwv/B008YlsioCFMDac8tQ62pKJoBcdWhq4NNiHiCPWhhlZ7MmkIqyXDyhDoXJXJCEcv5YNfN67u8fpV9B2wBEdff6vexZFuB78XBJ6ojpNuTurd9kxMzP128+8+ARa5/oHMglEcQwCGbDgZkBNp7mfciE29IbpPUaxQa9Ygc0ug22s6629owIxD35CWiy66CICuOslx6aWX4l3vehcAXSa73W7jlFNOwZo1a3DAAQds8jLZWxLnJI/gXwamJ5X/+vwm+GyOD6L8t41B1SC6qVVbd7AsH8zWVXHzZNB21eYxS/So2J0OobZhvVU1V+j3RMr1PvAnDjGmdeiciJRNfDGrzskSivK9sevzvjG5garX+dDnDYHMFZDnANz8HJOF8YdgM3KanVOSO57ALE9y1AZren3aB/OnoX3FDds+7gDMzTc24qx3f5osqqLc+H2vIvpVZiQC/19TSDov0li1DR2nisBU/be5SbEcou1+18RTasLS4x5zkqq/a0Utrsc6g7FSiNn/wKg+WZ+FPUfR1AseTnMU5pZA35AWNQn7OpXJXr58+aZv0AzEqWJnfFk+tkHbXLH9Xs4AzmVcrkaQ/8y6VGJ2zX3o0WxtfQOkD6omTZK5hJ5ZD5oHrv+gcZWLi7bZY8JZKMd71zxQzBqr962VBDsbrsrs+67V95t0/3ofMPviSlAiI0N8KLeKhkuCuLpB18ESEn8WSm3l7a3yH7GJwei60na+suSajyxR0bBkgpsMtbLnXhfalvoBJ2o+2fWVl6pBN1dAvbC9p2SmyQrFJY4KE5HN30GDU1ynInjWhKRyBXjFfB2iopRjJlB50c8yPfCJwhyRZxKi8H+hMOi8+JznOrOvvqgwjru1wRpEmiOuCQzCmsl49WXqJ5QvZbL9mUD3mCs4/L5z1bJ8r/17AXCyA0RoCFLqaB1+v+x/yT4DysSjitS6So/tK1VEhoplZkkO0XDNG3Stua8LKWxKypIfksqnrkpvMURiGkhL33iE9ETfkJaAahCx2NCZLjcH2YHINQ2Q4yAfcHwnUQKfkV04d3cnCqEK1o/FPkH438k3HdjlG//E0URMkwhepbbXzJM74AK2PlFVtJAlCqJkUuMzS9+U558j9wNxw04j5/cqwuIrMFWh3L4DaHkwoX1HXjtcMxXvO5zc+m3lAxutU9Vn3YEXiB2nXnvNuYkoT6yfiUlAJngyMsrFkpfW41C59nuJYqFn5cX5ySQHGrEZ+NIu7ScCIE0SM55cEFInqAOKcGpGiGgdcsbVifSsubAhJvffqYK9li7Z5eoO75ecuLgmvrLPiU0CuP7/nr+e33fctrr31x6XPRNyOJW4Aa2QiDguOT7bsPZivcStuN0YT01h00QqvO6J36/3fAJmHvqfdj3LQSnlNzxFOMyDoqrIGY8M4O/WNu8+8KoIRi8sL1L127Zwe78d8Pw6Jvx3PTPdoFM2Kcx7ydv+NaSstD7KJhN3MIgjrCcUFObBaQfwqDRY9JL2e5039wuw99VtF1fRbLvKg5fvg8EJhbutMteKRzFNxuRH+6rK4+I7fFPuDoLKJaRSLPJHmfBWwBIWva7NpssdNH1zQ85qSsVRZJx4ya+GfGtSKZGSM2/iZkPOlfa5SMdSdEe62gm3aJPuF6Kyn/O8Khdts4cpPHrxvD16hkefN3s3R1Ehvxj/vvN70Nu8aV/8v8yJj0/uuZnQd8Tlx/SVHoKfZNAn9XS9qS6VqQweRWV1Rdl7Sv5JnKDSvk2ZiD5UW1QkpuXV7whKS5/jy/IxfCDepVL96IVv77AXyI8CsDNfemiRo55vDnCVlupZ1WScguvMF8YOmHpGR6AZGB2fP3A/N7QrBoskZBuK9619wDPxuCSABhHKj8GhZXd7LWw77edywTj32vJBgK4VqR/6sz7fdi7REIJtO/HJ+gOKvQ/K7JcPMnQ8X/WhgdMlpOVq31ztcdtXTdQ4geOqEr+G/J5zPwrjmFmYarhWQo61VAQvT9x0/zSAyby45syPQRXLyKSQF2HJVKFbJ7crFJ7SdVNAmjtqFJ2TOUZiEzTWi/MXUYRc2TZQX2sXJi9uer1k/h4YjLVCUmUK/cjYH+DjfWsfwCXz/bpDZfLKf6d2V5P58v+S78M1abr3ciKFlJsc7bVzt5HeNkRWAPc+IrOERTRioCCxfD1+vOko6rpFEMxDAILSslXgP/JH0RTRpGoRXbbtnqDaOP4DjWd15XkYeDZMkrP5wEYqge+30AvlB6c7W/PNH1aRcLNy5kpNKmzUR5XZhBMOHq5cNoOVB25qFwAnioPv2zdFWYWibC7iyoZdbokeX9f/XFZ37Lnpd1sDp0y47DKfZPBZNFdhAJiQeN8EUE1q6HgTKzFchaFCinwgStLczJypAjPPw0Ih0gCsYpKXMwpTDhjjywKw2TjVlSoXn9TEUhmlkyuDtB4VgeSQqjocnq4dv+5ulBomjROfecBRxfj15/8pfi16OcT6/80q5aWqH7rkvNzX/PvAyQ5XCnk7iUhSu/h9MRFmSY5WO9P9w0vVwKtQ9ytvCQikZavB7JrAUEUhOQ4a4Adj4TiKAu5g5Rbgc01CNvmZ3a8vIwNYb8ZPTk5cAlSexfnHofZNhiBNFv5DnRM3kuq5AyvBJXQ0kLmz1moTk/ubPi+udk1kBvIJRfka8t/8Y+pzsA9+rnxwid6/Fpawwqs1Ux4QfFODJbXltvD28mviD1wqLwYu47+jN0ilJjHktMvNPpQkjpsTuJpC8Gf1nFTSd78ml1XkXPLJiQ197niVwakddO90bSLrVMuPQW3YkDIW/P5NNED3MkNOtD434/Hjldel39x+Zvfj98neWX/peERgqyBzhbSbmwSPdL84od7YrNozAlE0Pa8+RyAtWwlOW/dgzwfPJfP3MCYRcgKkgcgdNKOKGbZrFuLbV8EfeKrX8c0P7m/W7u8u58eocmqdLMqzejswValFdE3e9OS9Tj0hv/2JVKZmU68kfO7x/HbZg/LMuEQU/Jlt79lxOUPqZK4TEQGdBVk6958GHbo2vgLHf6d9cZXFnUm7bXLXLZsgSNXo5LLynvvf/bwsABjhgZm1A7B+MR5Joc8uEXFJjG2722c40eD78tUNjiqlie4joSEinD9nt/WSl4vn7dHzfvuTi17KHbVBLy8rKvS738f8bey+y88N/1lRNRECymSmyqdKsvvHyTIvg8Db2ZfkRYjpefU5+v8MAgwGPaXlwrm7F0mjIk9BsaGXg3FkSgLQbwQ+AHGU/UDKbdkQMtH7AWsflv7xrO+H3XiyM1FfBaGHryuB698bQoc6X7H9Xvjugr3N8X0fgF6zTyvPo2J5VZ4K+z7RANCbuLjv/nLe3vK+yteaqyzuOfB+YgdXUl/cY7nExYev1ABls5klgu4ynwCQuYiHNMsKpaNsnopYO917xtUU38mVTKX8PnMS7N8fWq/Kr8I1fbqTBVqf/uMTKZn8PKpUUDpf/566++ARcb3/71X7puVV61et5/tj2XMo/3+4Kc7vDyq3ju1Vx7Wqcu8JxUxGcMTV6P8zCDD44MiDJsPsebN3A0Ahvr1UES1Lk9RPy+zv5T/+RJJzr4G0CuXBx93PRHK1Sww2/OHD981nv/7DjB6oX9tuTxz31H3O7/RAJXMQJyFWQu81QNo28Do7fMbpRha517ZMSMoP/fJ1cgfT3tuXTTq0jTvou8SCCLA/yNHg56ou7nXkpKaXgsaJnntOfFs4Zh8T+srazlUQiggifxbuq2LvJ1eZyrN0v8oxv56ukuQOslX/H1LUXGdu3Udo2eyavb6XzN+jsmI0rcvNlr4fEieaLiFzJy20vq/40HXl94z2W/Xf7aWiuOdvF5KvEB2H3t2+ZI+dSE1MtUJo28z36ZPRgP5EIC1bGeIoMoQFcJ0ZacbIBz7+MOO+K0BZHVjfcTkaIuqpfPgPUL1/VyKeyDzE2+M/lKoe4hO1l965PwZ3wiUVALCDWRzZCrxjmSxe5MsC58EK2IrcdnCbuE10rCoFqNz+ic+zrP70vpFV15gTFCJo7ncbck++Unyw4AOff2zu50BmMLuNOwuv2tZf7vhQZG6ETtW7VMqEL/dSdfg9GIyFyVtUdZ0I9tzd68tJAfUFvT7M9aNzp35HqiLtsyEizK65faFKdeH9mvyX+L59FVM777pky7++fH26N9xJvmqS41+HXqSTH5eb6lzTbXnf/NqOOU667rF9Ej2ZidWMA0UPTfXV5+j/MwhwUPVwJ7turoDjnrqvgjC4UnSVyYCDD8z03f+9annvNk9MkLjDIoASueJI5PqJS9X++YBLAxWFOCdSGZ8g7ihJs+Iq84d/Tpx80Peq8/DPVe+rOtKi6vxzpcBry6wP/sxeExJXJdDExCXARNZ8ssdVCa282L7VOzFh777i9zX/XPnnONI5OupC2LDliv8DHxQtmff9bnzFrXyf+HlX+azwQZj+Y3yftB+uUtEybq5qiAjzG8LcV02eROW1rGovPQOoX/nEnJv2qJK0r34RfF+QKvLoq0m9SXp1u/nxXdObe785+SqrcK6qRucK2L54/hw7uesLBNICIJCWrQ4faz3kzIR48TTK88AHPe7k5j/gfRLDic36wOXnyaB87N7khx+/KrJiMvKvP4CQXw9XoBqCXzOFE595ACc+84AzW3Zt8K783EvVqDLPVA3kPH8LtYm3veo4PMGbPZ5LqriCwL/7BMxK77ZN1Gd4HhtSpGi5boerKriDsj1vfvxyO/j1KQ+ivhICWIdb//ra9rvOwz5x8cmJ66vCCYUqtdWaldATvI/x8+PgChRvB5HcJiPYRAx56L9/Xf2B3TcFvXXVfbhk/h4YqukU+e9afb/XHv3OzUn+OfaaeEz2WvBlnLBU3XO+XhV4PwJQKKLllftSbQkIyeW2ZsQR8L615ZTgRGToj+2TC/0gcR13fcnYVRHok6veTNQumnkmLEeUfTjygaY8AFWRAfchp3qmQ/fzuvizNXdWZ2dmfjspgVcvFcDOZF25256n/Ux+Lb7fgxvJxSN03Jmofz7VqoSfNNA9x16o8oGwvjZu1NBYJjG3LkAlAHxTH+9vfEDi5jQb9q1Kx+41ENI+9btexlUWSwKsf4dgikP1/QMawldM7DX20+Xz/5St4u3eH19FqzpuQ0Ro5/a7JoHShNEnUqHOylD0MnVQO+gzVwV5P3zf2vtN2/7ur/eY7bUZzNY2atQ1oWlMQMrs+UelPsonSrROVSFG3ja6rnR//bw19N/SSRiVc3/849Fy3paGiHDJ/D2MujTjEZLLAQikZavEGaPlTJkc9YEYIpFIMvt0rFJZCHygq54ZlWeG9LCoyuRJsz8+sKfew6tsi+bfq/0K+EMwV24dF273pwcygcvIRHraOZAraXK0cCKUK+3Tcsn8PbzcLdU+QdaXoiyBczLg14ah49p22W2I8NkZrptZlO/D3x8nBGR+4IONHQTtQExKFLVndk0UAyzNZmVxTwHALS3h+jT0Jlv6GrmhwzRo6fVVaX3ArSPFc+T4io4ligqtLK90jF2fSucSochZXmU6tJF55cGe93FO8uic7fVyiQn54PBBvNpsE7F9uzWifELvqytvXXWf+fztHfYCABz1+O/wte32dBQX/1x6XZuJFEl7DVx1jp8/9TN+HrYv2d98s56rEto28QSZ/QIVRVOO/lFbgbrU/7QrYIMhGjFqg5qv9pJI6QFiZX/JHtiuhF1l3rCOg+5+Pze0aykqwHe25IoDf9j1MhdNBk91M+OH4beTK0rUHj4j9R94PFU6SfSUjbiKKFD7G8IO9tzk1uucuCmiCvz+8Ovj+8D4proyYbD3iUee0G/0zo/lztjt8cnxk7Yh08tY5oajVrWDE2DuQ8NNUdUqm2sS4CYQNzrMDoB2ELTnxvdviVN1W2ldrnz5PhT+vfD7A9+vf3/8AZXS+3MHaJ94E9639gHHjFtl7toQvHXVfTjq8d8BAI5/+n60c+UQRWozV66qSCC/Fvz8iYhU+a64y+3/zV7v3jlXfBWH2uBGuUVO2YOAmY9AWp6FqDdriBvCRLXwhz4Hj7boNSj46/qoGiA/MvYHs096WNfZetwvY6KHbFWbqwb/f22+ACkz0fCIh6ocJDqao0xA6FzoIUf+LeTE6w/IPuHSTpSuWUH/XhXyXV0tl5ZVDUpE8nwSSVEvPBzZJ2K+SsOPw9Ukn3C6UnzZX4OTG35uvA3c8ZcPYta/wb1vrpmtTN6q1q0iM3wf/jnRb76pocpPiw+03K+Ht99f3zcrlk1ZZSXA32ZdmjvXlodAv3fNAw4hftfq+01bpqoukCrj+5b5ZKPqOtqXG1ZeRWBpPzysHLC5anTf7H18Onc/XLvKt2pjyoFsdgRHXACBtDzr8LMDDkKe5sjamanXAYANIvq7/7AHAJ+s2IdReSYJlAf+C+fujrl1V5Hgik65LXagpUG3atAHNBFyZ3h2sBmKdYmDOLLJz9zBwR2kZ9cETnzmgZJiEEcooojscbkKwGdvvH3ld/dC8dkk/92fddJvXOmqmpXTefLkgURcaL8Ef+C0g3qV6mBlfj8/jT+DBvSgypWt9Q2WVvYv56fR98AqMNXXpkxY/Nk/7xd8wHdJVpWS5K7r+zj55Goi8P5QZW714f836Bx4KQa/7wF6cCfn8Su23wvvW6uJTJWv18agmmzYNvv9rEpp4vfS9mvud2WJB2Vqtsd298Exty6cPmSzSpPZTjgq1+D6OudMQBSFNP4IpOVZh+5IF8lYajKG+uAPYJuXxHWsI0z0P+fE5uodlxTru2UA+MzRDfd0c5tUZeWsMkn555FIhS8O724S6DVEhLl14TywrAnGHbgu2mYPb7DT+6NZJjnvJVKxgoF29mczDZPSQfWeXFIGoMjxYosOcjWEO60S9H2htpZrB9E58HvkqwycbPCB0N02Mk6lfObK3+mcUlWduj7tQWhszheXGHClgrahgcY185TNEHYgrJ7R+/2j6i/Qa1kV0ePHqLrOBP9/4vd5u9z6G/n9Xe/Hkk7yl/FLXgzGtlbWm568FwBwxfZ7OcR6OvCGlffiravuc+4f3z+/Lvy8rDnNv/fudaB3/oxIpMIziWTExU4OOGHT5MZVyHqRK3/bgJmPQFqeRbhhz32RjKVQuXJCQ/mDgSsfvQYIDn9wpGX+jPuK7bUzH5dm+UOYHhxlnwA7YNFApwmIXacqiR1XCXyTiVVcXNOH/i0qCq5J58HKZ6jvXVPlWOyaYbgZxD8XOg6/fhz+Nr65oNcMvez86MrsZD6ia03kgJYD1dWdy8dyZfZUVZU0UJBwHzCc+PqmAt+sY9tcDtXWxID3DU5ObBusYsRVibJy0gtVps0qJY+uPXeo5sfxlQC/7/N90L75b7wt/kDtmjuIJGtzx9e2syYPWsd3uJ0O+G3joD7Go6t8sumbHGl5FZFxzW/uMW1CRpSOQ+vTuzVN9RFZCeYhAIG0PKvAC8gBE6smfICg71MFJxpU4LGXycR9gLkHp4cVn+Hy36rg2tftMt9EZj9XOzICk6tg3etcfDNOFQGx23HyVXbIjSva7pOXqv37xIra6JpLyjeckz/Xf8VVS+j6ClQPsj5xqFIx/O8+WSj7T6Byv64KUt5/NQGsXlZ1TapIe9V5rA+++qb3Mbn/qrufiVWa6cbxT99vBv8qM3GVklF9HXtfW37fOKn2+yvvw34/6GV+7SeE2kMaIeT5WQQiLJIN1nbwrwol1Nvx2QsHf6j4Dyp60HAzAiBKxKAheN4PvVybPpQzg/RnUISG0PlBzp+zGwtlVqBwT34s2v6ZJLeOqdKadsjBL5GRQ7DoeH71XFJ4ygOWfXjPrgnPVMBzltC25Ye9f505GXDzVVTlO3EjZXi4Mp2XtuPr3BtkbvLDmvnD3iUd7vnUnQHJtsMqQ1YRaOcK61Jp2lBlSvEdo8vXw+ZDobDssnLhXj//3vh9Vi8vZyjm/Y3+I/z+VikoE5EK2o9vZvP9a7g5jr5b0wonsS5B5dc9V8oonIA2Ex33lA1lni6QUkrvtIzuy2AsWFvLyhlve/X+7XmWo6y4f5Fyjh9HKEU6kcnWOnrbvnPlwr2RK2tWm3GIxNSrNG8FpKX/zyBg0siT3JiEpDcropkJ9zPQv1dL5L0IjN2ufPyJHubcPMAHXXpQ8zBh2heXpRsiwmnrHsQHR7QJp+yUSANnebY2lknzACO/FT+CiJtZeN6ZXjM/rnjwma9PPqrMV3TuvaJc/GtaTg7o7qfXur7zYZXdnw/uvdQGf6Dwj0WOovb83QGalvdSA3zfB7o2PANt7/26kUN8GT/nap+p8qy8Vyixe918AuWSuqo2+veKnEWJDPC6T+61cM+D7tFkzF/ThXetvt/xr6FryR1c/f+qf717E5Zy2Q5OGvm++DtQDsl3J1muT91kCWfAlkdQWnrghiUHYSDTtUySNMcbVs5Q9r0B4FVv9TvMu/tAsA9yd+auf7POgu7M2n8gc6XG91XhuRFI4Zhbj50IFcCdEVGb/Lbz5YA74LgmqPLDUx/frfXCz8GfuedK4bzZu+EjY39wVIFcgT24rYOrnwjPKkFlcMXLdU5075c743ZNRz7RIP8Pe12iyuPzPuGHhNL58WvMiQQAE1JOfcc3Z1m/FRSz7/KM3L8+fGDx90XKg22nHaho4OJ9l6tT7rlZXx9fLdRZoatD7vm1pHVJNSPiYBUjVbp2dp9l4kgkj1QE/T9z1cZezqM+keGmm01NZPg5Ut4iv130v2tXXVSU+zNfRvvxVUHaL+Wy0fdBlEitHzHUjIVJ1Mf73bd32MtJrjdjEDLiAghKS2/EAnGhpU8kVfcLrnvB0soCcgCfZfizFpLv+aCjStsSuDpil7mOve1cmrBhPviQbKuP7c7qrTOj63RJv3FnRAD44MiDzNHONUMMxjqSiLeR54Gg/eocLO5gzh1Ez5u9W2nG7ftv9HJQ9GfWvkmi6ppac0i5P/Jw1/Lg66dQtxvbQoHuAGHb5ObHqFbP7GAi4Q+arkJFSdH8c+Ukxh2gqtUXOhatU0Xm9PGk4wjqz9R9ZZG2d/2ZfEWA+pT9zLflJk1qq3+/3c9uyDzth18P+s3P4uqS8PL18InlpnyOvWHlvXjdE783r2azZlL/c3BTpusXZZdphUaUlEAC/6/6zwHen0hV5WoMXe+GiBA3BOo9zC2UBXhGITjiAgikpSciEUE0YsSNGA3RJ8mHJoBiGW05aGDgD2zAHWx89cOf+fJlvQY4/qDWGVKlE9HCQVK4jcJA0RZLHN675oFSeYCq45XNLq6awQlGruDUIXnfWktcKE29P0jo8GZRGrDiKPKcfKsGXzdqxleP+APd7sf97M9g6Vz4IK0HQfLXcRULH+5AYlWKXoTFVTvKhIXe3Vmva57xTX98/1XmjzgiJ1/eTlcR4QOa9YnqXWnaVyd4X64yIdCM32+vT6DXR0j5udEyn4SSmYjuYRyV98+P7W/P27a5cMRjv2XKLrXVPlMAt0YRN/XY83Idt31iyO+Z/U/b5X7qAGpLHEWIawIy1xGUfNJRFzZj9XcX7O2c088PfDluWnoAbtznpWbZLQe+erovXcB6EEhLDyj2cK8PxCW5s9+QJ1wG9X6rkMhpVkL5Rir36Q2yBJ6UzZ/10YOL2+fdZHW9U437sytARyHRLJ4TS5t111USuCOl7+Pgh4OeN3s3MysbZMnpZteEl5VT/y7YgCecgcglClY5stfePXcFfxB31/PzWrjH4L4EdM19BcFVKKpVBZ7vhA8A/kx/sEje16wgBJwwTmQScM0pfptdBcQfoGk73jcagu6TS3bKxy4nZQPc5Hllc12573NFxG1zWQ3xlTD/t7qwuVfoXvJB3Z9c8P8M9VP/HDenjwuBCjDyCQInfYDfr1zyxq9hlZrm9zX6X9F9o/U5iLyoXCHPZOm+6m206Yhve/N+ByIvHMhlrnDjPi/Fjfu8FGknm+plmjyC0gIg+LT0RFR07iiOEMUxBnOFaxbvAwAmx8nrnvj9lmzipHHdC5Y63zlZ4LN1/YCPQB7+VgVxo1P4QwRwHyI+yg9Q990OwpGR9N2Hs82xwdv/xeHdjdMt7csfFLlDHplX6KFGq45lmsxV5a8YjG1E1WAcYSzTn2fXbJ4TPtCTfTyOrKMzf2CXfYncc7I+Q8BgXF7P+vcAPEKqrHLQDN0lZnRNOPmx1y9iv1uTIPeL4IOfOyO2Sg4NHL38X3qZe+i4dJ1spBLvV/zYfPBTzrUpOxjbfuSD7q3vRO2TQN5ufm1oH7pN9lr75g9+rvaau/8D2kY699E9B1rO90XX1v3P0jnz8yqf/6bGG1beiyu238u5h7xwqK8aAe5/QZNKNxszR5VyxT+T/4x/HVNplVPqd3yiEcUR6hD44aIXYWBuA5EQUFIiKsxJvZJzbkqEgoka/U+7NhG40qJyhbgRm8+d3GZlnOm47gVLEcX2QQjYmS3gJvTipgYCH9hc2dk9TpUEbglRWQrm69KDg8+SCWTL56DnBeVLOW3dg8bHgPDF4d1LUS2+PE2fqxSAi+ft4czq+TnTuWjyQufhzhL9GTpdXx7J4itf/AHKZ/n2N5f48FlilUmCmwSqZrt+lAXvF/Zc3IrQvtrC2++bH8r+MnzgV8ZM6BOdslpTVix8x2trQrFt9dU93k7anx9F5B6zPIvnx6d2cbWtTDTKKg5XqKr+a4KZFukzN/fUhUCjHpuB1iWN7v3xI9RmAvxry0mh28ddwk3b8nf92TXb+v3QV+n4sfm1lfz6xzoIAwCSsdRkEk9bCbJOhjzNkaf5NFyNgA1FIC29UJASUXTcKPb/CBF+vNvfbPZmbQyydubOHJmDHH9I8Jwc+jd3AOMDVpV9fLIzOV/epmO3Cr8RnW/Fz99hHzjcAZJAjrNUMO6DIw+WZrGuc7Eqqj6rnr4xNAunwdVeL9esQG0iokHZdInY8oewT1Q4kfEdYqsGtKrZJL+OvI32syod2x/AqtrmQ0ey+L4S/HeuHHHVwV3X71d8O+pX1um43CC63vy+ckLN1/P7QLlPl7Mw+8eg7QGYWbv7ck1CVcd313HNW3x9EUWFuqs/xw2B2mANjVl1Q2CiODKTKKkU6kKgacKjlXMsXxHbEqD+55K1ajJStS0n2i75cPcPWHMaJ2ucYNp96msllUJcE4YkmpQQuTLPfichZyKRjKfI2pl+rgbz0GbHRp3Bu9/9boyOjpaWt1otvPvd755yo2YKVK4gc1UiLID+c9SbM9+6pnKp7bfsAZGkufkzVxEToOw3oZdN/sFXNTjzz/yhbWaY8MOP7aBXFV2yISSJ3rm6wPO6VLWf1uc2cr5P7qBKJIhHGFVdP66wVF/fiJ13WTL3yY3v+EzH4O3kKs1Y5pYo4IOyPZfe14OO2SuKzPYrV9HxZ7j+YE375OpQ1fF7mQh8+d93Hq4yR9C5cIXRdWAmAlWOPOLnypeXFSJ3EOX9ngZK3teiODKDJQBERRQjvehZpHKJRj1mJKbspMvbWRdii6Vt0Flz7f8e8E1oZafhqn7gq51VDstDtbjwCSo7xleB7gGRROGtZwhk7KovAEw5lM2GKAoFE7GRpOXyyy9Hu90uLW+32/jqV7865UbNBJDNUjHGTZ22IbT3+Wt+98st2cT14oeLXmQ+84c6NxVwuKYHGgDtIFZFEvz/LM2gejuc2ogU/6Eztx6bAcyak9yIJDIX0QOJp9T/4MiDjtpCbeHEolfEkg9dEdfNb+Gflz5GZMhAr5k8XVu6plQc0d+3PzBWEYqqZ6SrrHBVp5x91N5Tt36Puz97blxB4AOOTyrjSOfJ4KHrZLagQZvuCSed/gyYO0pTG7hfDm+Lr1Tw602fuVmSX0fX54bW901uLtmhvkqmmMkgjmCUEDJhccLCrwmZJfLiD1cbrGmyUo8RCYE8kZXPIxFHkLklXf7AuzmjhnqBm74AlO6d3xfs8uoJCu9HvC8QySDi7O47cvZZF5oIVqnpcSM20aP6OguIRozG7DoG5jQQN2JzrIDNiw0iLSMjI1i3bh2UUhgdHcXIyIh5rVmzBtdeey122GGHTdXWSeM///M/scsuu6DZbGLffffFz3/+8w3eB5/t0MOCJMO4Jow8O1NxzeJ9zB/Kz34LuJlgaWAq+2JMvkJuL0LDB03f/OTPZPnATMSEBll/RkwDoT/gUo4WwIYvk9JA5/K+tQ9UmgR8+GGStC/fF8GfwfqzbXst7DX1I5d4vgm+rErRIKJEKIdM+5FG5XPlZkF/G/dYtmI1HYvWLysZfpRLLx8T3gb3uvnnVaX4cQJO++kFvi4fxAAiJe5s3L8fnPjSq5ffFz8P7qNBEIXi0YtUSGWVXVGoJ5EQ5vv6Bsi4JhCzKMeZ4sNCMOaYyO0vROx6mR0nUkn830j5sKHLvdsTFWQkijVxUcW1p+tM90CTF4F6s4Zas4Z6s2ZMdGI992RasYXMQ9Mxnk4nNugMttlmG8yfPx9RFGG33XbDvHnzzGu77bbDu9/9bpx66qmbqq2Twre//W2cfvrpOOuss3D33Xfjla98JY444gj8+c9/3rAdxQKq8EnQJharmceN2Pk+03DN4n2KNqoi1Nl1BqUHaRUh8QdJGnz8WdFkUDVz6kV4uCLBl9PgaiMO7A7poXT+nN2c/Z0x+gdHgfFVAgA9zUIcxz11nxl437f2gSLcWV+L2TWdmCpXChfP2wMnPvMAG/j8gdclIVXXnUf1VMEOuFFpORFQVyGx6/QiURz+9eeKRtW9qTZ/uepN+ZzLqpDfZl/F4SYF3n637e758OizKhJmP7uqUJVPEZkvaT+chLnnXj4Ovw+ccNDASMv4/SElJYo1YTEJLtPczO555IpeJpzBM24I1AdihxxR+PGWAjleU74jApEVwDoVV99j9/9bRWREZJ1pjSLumJ9Q7EOViCNtw00+kSjuQT1GrSAqtF5c1/cCG6C6TRVbomDitI2n04gNcsq46aaboJTCa17zGnzve9/D/PnzzW+NRgM77bQTFi1aNO2N3BCcf/75OPHEE3HSSScBAC644AL8+Mc/xkUXXYQVK1ZMej+RiIBcExb+kIiKThptxs66oSBSRRlw+azaOsVFoFDmcnFAdyCpGgA4XHmdQou5U6D+nfxDerbbmb1WL+cDG7WzSjXJlcJF2+xhzo2OPVkT9GXb7mly85y2ThMcHhb9w0UvMg/I9655AJfM34MpP64qQefMH7jcz4S3mcvafLn/nStWdF3cdeyx9PlXEQZ3X1XqAp0HX69Kqi+bmAAb3moVDJ940rp2uXs9NDhRKM/Eq+5pL3JjP7uOqrwdZZOSHTB9x9YyQfT7a+QMdjQgilgnr0Q7g8qV+x9MJGqDjLAU5iK+PYrt43pcRLEICFizkiyU4RgRjnr8d+WLsZnB+1gcuSkAuBOsJorlvliFKI4gigAeHvlDiklcE2gWn/NMmolPQ1gfILsvff1oKlpratOcITDOJFYTSyUjxJszlmULpPGfrvF0OrFBpGXZsmUAgEcffRSLFy+GmGrFyWlGkiS466678LGPfcxZfthhh+G2226r3Kbb7aLb7ZrvIyMjAAp7MaKSoqJy6XTgmYYf7/Y3yJO8cL6tTohF4IOENb3Y3+jh4jsbAnYQ9GFnqAqJdAcYlzD1bpef54MPIBS94ZuZeN4WQBMNClumY9M5TRb04Lx43h5YNFiHZOYynp30a9vt6REuZfxG7CzettVe86oBurx+tXlHmQq2DWHDXem3qnvGr4N/3KpBnhMPfc5WdeH3h5v9qL302eYCUk4/8Nugq1HHmFt3zRv6Nzs7p1o8bh9yK5L3QtmXxiVJdj33ezls3PXR8ffPtzOhy4V6kie5+UzLJYAYemClaBYyXahcaj+X4nHDiQuZKZSUyBI9eouG9n8ZGNKPdpls+bDcC+fujtPWPWiSP9r/YuQQFt/Pp8qcCNjryp1gSWUhx2SgMPEXylRcE2gUEYBkQtOmIa6AaQpCZiG9LLJKVhwjZ9czEgJRxX+zH0DjHGFgYAADAwPOso0ZTzcHNop17LTTThBCYHx8HA888AB+97vfOa8thaeffhp5nmPBggXO8gULFmDlypWV26xYsQJz5841r8WLFwOAsSVzRYX8WmYqYfnRzi+GTHLz8CP0GvRs6J/7IHF9TcrhxwT+MPFnpfR7leRPx5+Mmcl1hnSPzR0tq/blOyCuz8btnxtdo3au0MpyE3UzVLP+TPxB2xCR8aMhZ1vf1wSAcch0pev159HwZ/B6n3De6XOVI6793R0M4kibPebWRSUZ4c7L1A8oLJ0fg/uH+DlgXJNkmVzkCliX2rpEVf3ND2OtykHCHTxdH4kyiXM/lw5nwmer+l8VfIdxN1lZQXILB08TkcKcPcknZWB4AI2hOuK6sA6fhZmC+9Lx0Gf+nBJxhLguMDivOXGDNxO4Uun38So/HWsmipx7zcOZ+fPNmNlqolJB4fslZ+cqiFhHhMZ1fo01YYlEVKgvsUOKNqdPi04uN/UXACxevNgZ96pUk40ZTzcHNipm96mnnsIJJ5yAH/3oR5W/5/mWZfeR75ylVGkZ4cwzz8QZZ5xhvo+MjGDx4sXaAStVyPPyn0N/nlkqEzD5LI12Nsxni/ah7w52WpLn2XP1cjeLqd2P/T2OYLLG2n35bbHrW4WAz4gjJiu7+Tl4OyciVdxfYrLOiTRAn/jMA/ji8O5IpMLxT9+P7y7YG3FDQHZtHyezUBzpeiW8ftF5s3dzTDP+4Fd1y6oIBj8ne/6kUkiHKJT30Xv/fFDgy/Q1d+vE9NpXlbmI30+u1nG1xT2WSyCqfFS4GZKWE6mifVW10TXhTExcq85nIlNlFar6GCm0/iAt4sh5xpiIoUYMJZX5TxPBqQ3WkDYSREKgVqRciOtxsZ5VB5RUiOuaIM0kHPeUrp585UJd14eUJjLzGAKi7H0i8lcv9mFyqTB1por8yFwhjm1QBZ9q8nvBiQcFW5CJyQcRmqydFea9zTfWKaVfU90HADz++OMYHh42y32VhWNDxtPNgY0aeU8//XSsWbMGd9xxBwYHB3Hdddfh8ssvx6677oqrr756uts4aWy33XaI47jEAletWlVii4SBgQEMDw87L0JcUaUUsLkTZhqongbBnwHrz9WKRXkwsdv6Ibh2/4rtw5Xf7f6jynX58em9WnK3+/Fn2YQzRv+AXNlQZwLlh+CII50tdyJcsf1eTsTM/8/e/0fZdlTnoehXVWutvXfvc1o66AgkjEA23DgWYEOEw5WxX5DzjGTzyHDiYBMcLsrAysU8goNDMkKSESADhQwjTK65GcS8ONhxfjzfxMMejjCJcCAvwSFc8zO2MXDB4UpByGAh6Uh9evdeq6reH7PmrFm11u7T51efc3DPMXp0997rR61aa1V99c1vzukMHQsA5kzrK2q7Xulr++uPf77o3/J6xp9rkW7JJo1ZBQAyafPP1EQ65TrZFFGkt68/4zw0JPwtXVx1O+oCiRpoTIEk/qzOiVMyKqXrTO9bslfjiDTd3yVTU4Z1l/2R74PWhI37t2TKdBK4HPkzPUmyGUdJ5Dj3k1/7Iu2CSexJt2wx255hcWKOZtHIDwtDtevJOIPbPv+J0bkuB+Oq0HyNdfgws07ZVZaAxxlmbd1nMbHiHCF00GgfvfjTrDox7UFKvFwOrrdztXrOmwIt5zKfHoad08z7wQ9+EO985zvxnd/5nbDW4mlPexr+4l/8i/ipn/qpSybOAUgMfPPNN+MDH/hA8fkHPvABfNd3fddZH69OLHTYdODZ2Ptv/I4Db7sJfLBtyuugV8BT3TAd+jm97UEZj9K9ks+dqWMCK5tuy5QL4yC3UE9CTG/XVV/Z/vwf/G5xzLqsvf7uJx/7fPH5FHCp961ZFD0Rs20Oa96fddHHm3IbbWrX1LF0X5e/Y3XvxufWbNgmq9vJtin52/QxxkAzHyODGn2NtVtuM8NCP2eaWGvjcUYiUpLxhJl1FXZyO2PLscm1FsaWmo/L1c6njRxCXR9PH7MMojjYmHOQ8PJLkZ8lpOs935+D2oWeTy+UnRNo2dnZkXwsT3jCE/C1r30NAPDsZz8bn/jEpUX2P/mTP4l/8k/+Cf7pP/2n+L3f+z28/vWvx3333YdXv/rVZ3UcHYdvkx+6WTSyirkUBbP2My6zrq1eMdcDu15patMuFz1x1ccrgUD+Uu+ntS6sn9HH43btB5TqEGHtEmA/98LZDROySYxLnpA3Va0uzxs3tqm+9/c8+dmZJVIVoNkYePE2r330cwVzsB+AY2CmAY7W8kwJlvX/5X0o283XyDoB3UY+N1vNgIzvydhFw5+V7FF5fL3dNCuX21aDV61p4c81yNWaiPq4df9Mbbfp2vQxatPiUgCSdqDWwZFOotShaJZEW/2ZTZlxYzUhc2guuZhovLrcLcQSZEwtDjdlnuX7kVmV8cTMbAsbsy5ToMNYK4BF9zm/77rWEGuT7CEy7vEC/ZyNXaj59ELaOfX4t37rt+Jzn6PV53Oe8xz87M/+LL785S/jH//jf4zrr7/+gjbwbO1HfuRH8A//4T/E3/t7fw/Pec5z8J/+03/Cr//6r+NpT3vaOR2Pkwl1y1Zi9fmB/41nfueFbPo5m858C+TVrf4//02/pyIdtItCizDZaJIst90kbq1BzKY2aCBVA5p6Vcv6GRYGlxPU9ETCYco+kj+9npinzEeq58LGUQ/yfXLB6dULtyd6ilTQrAx/99cfzyzLX374sym3SwksagBYgpX8o90spfg0n3N/1iJP0D5CuXPGEzYDizLfSp7I6/7U39UAeBzRVrpg+Nqm2J6p+1a7pep27AeIayF3PncJ5qe0UJsA8pkssyFuo4s5T6y22Cf4gLDWE3AVQdM5EYsyYPnI9/6pM7bpUtv/64HfzqDDx9GiQAMMEdOqvtZAxRpTuJQ4r81U8IRl1kq96xqwaODi+w37N5efTOBC2oWeTy+EnRMU/6t/9a/iK1/5CgDgTW96E2677Tb883/+z9F1HX7hF37hgjbwXOw1r3kNXvOa11yQYxln0S0b+J58zO2cciBcbhU+efDaRI/rCb2OEClXmcA6BJmYHh/oNxc524+k0NR7HUlxJup/P7dTzfDsd/73nPjj+MsPlwUQf+4JlGjuF09+m2z3L6+9Cc4AP/LVz2w8Xi1C/fN/8Lv4teufRZNhY4Ehh1j+yFd+B0AGkEu1yl2HiL+5839NnuNVX6ccL9R3U6tJvv78PfelFgDXRv0UoXOcbOq7EpiaAgCUzAkdswayNRDWrJ4GT3UoO+8z1f4pfVTJEGYgVetNKLJpSkdVu5GyS4jbzPdBX4NuD+9bM2R62zp8N9cLihTerKNTbM6vEnyE8YEiVKwpKs3XbmktFLWs2UjRRtamcGkbMOwO+I/PuwUv/NhHRn18OdifSe9Nnfzu/Td+h5Qn0Kb7EigTyrExYzUFVFxnc2bz5Gaj+2I3Ml2si6nNWAN7iAUIQ6Sf8z3G2dqFnE8vhJ0TaPnRH/1R+fu5z30uvvSlL+Gzn/0snvrUp+LkyZMXrHGX2jRCJ0QeRHzlWnId/eZ3fw9e8OFLl9b4nic/e7TiYssTYZ64Sjo9pokE8HGczRXIExqvlGnSKSfzeuWs6Xzt/uG8ItS2sTtD59+YyulS5zKpJ5xNrA9/zxM9tSUAMPj5a75N9v2Rr34G//LamyYmVvr9S0+8qXD9uMbixff/N/y7pz8X/+7pz8WwO4zEkAA2AhY2jjZ6z4k/PgIWeVLPfTGdF2UzmqxZrGlXUd6Wj8v3vC47wNWrp9qzn03l3ynZtvy5bpcW++bqz0jJAsvrqN1bJaCKk8/X+PzltrqtDHa08f46V8h+FkMAHAEXip6xiCHQj095RawRwedo/9RQmbg7C+etMCwcBs1BnJcrYNnPvv9Lny6AS8G2uDLiCMCGDLeVWy255CzCiF1xzkwwWxVgshkk+nD4i9YYI+J5hg+d7/6Xgx0YtOiw4DPZT//0T59TYy4nc42FtQZwlHGSH1jjjPjUjDNY76wvXSORVx6c/VbbOHHYVFXn7PcvaX2u8VOunMvBWx+nzMmRf2iQr1fnY7FjvbrOf9cr+Tq0t3b5/NITbxoxKFpoWR+LwQ6zL5016APlDPmV654JH4ml4QiiX7v+WXLc99/4HbKqC5EykPLg94FvuxkA8H2/93EcxDizLmfuLPtXX3tACeA2C543MW/c55qpKSOacoTQOkSsQsA8lS1YTTAxbNyXjw8lIFiFMHn/dFv09ZytjoTuY+m+0syP7if+mwH7lJamfiYBqGix6b5lwKJX87zWZx2FLs5HnwFYe2hSIPqAmJiAoL5gIa5ON89uIP5NLIvBsDsghHhJF1Tna9yHmnEpK2AnEOGzq6wul8Cf1Roi/r5mZDYBllykMomhUd6bIzs8OzBo+eQnP3mg7S5l/PaFNgYqw2rISYacRVR5aIbVgA9++5+8ZBWfNcMyBSamrNQjEJ1uTc65oifAelIqJ7ixOHIToNmkPdkvembz5zoMuxQLT9fEKfULOudMzgFSslA8mevU8//y2pvw8q99psjG6X2E68pQS/odAFDtkg9++5+E7/2BwMurvv5Z/OLJb5tkL4jFsgAs1sGf8X7X+zPToVkGrVvK/ZDdK/WE74xBCIB2oWj2pgTBmXlzxmBZFZrM9y8zIlOh0HUOl1oKUj6rcfS5Pk9rLfrk/tzETpGeiSakOg+IPcMC23XJVZM8QBZVGRA7dkMYZ2C8zaJ/N82y1GHBRS0cR7XGXOeo3lgf0C3b0TGuJHvx/f+tiIrUgEUDGQaJUxqhKcCiazrRNptdPPV3wQc4d2ly31wq99DlZgcGLR/60IcuZjsuO7PVwxp9pnS1BR/hLpOxoaZI69X4pugRFp3yYK0no7x/Pg7/nyeqsVhxSm+RAVFeAdcARm+rV8s1cMkai5KF4En456/5NhHh6hwm2mVVuyFqV4GPES//2mfwS0+8SSbEX7numdJf4ktfh1GoavAUNeI6ICRu7p4nP/tAhevIBRWk/7jdr/jD38OvXPdMAQGbom60O0wDuDFYNFiHkFLj0/1aOCt5VjQQaY3BVUmLsd4bUjtLLRT3tbaQvttu7Kh/aytBaglma9fRGDBn4EW2efGUmUTev2QkjTNwsQQHzaIh17BjYWcs9BQ5L0vOkUKW3BEuV26ujXK0WNFZBBXqbGERfBiNRwCK7KxT7uFLEZZ7oe37v/RpAFQElk2DQAaAFtNC2XpbbbrQJLM6QNKqqPMwiIwhFqHk1llgOFy25RsAc5y3fWNLn8/TrORGUDoGVRuFH95+NRx622qTGidmnPTsTFENkieis6nqap6QcvrsPOnowb7WqPB5OTmbMzksucyFoTUN5ef6nHwcnZpd21SyMrZ/eS3lS8kVZsc5X1hUy21nQMKszPtu+HY552KCKQDKvBwyiTmqWzXsDsm9SKs77VraZH/+D343XbvFy7/2GfzIVz8jmURrbUptzJ7xNtrqbMePD6EI89UA9PEhoI8xgY6SzdJ9XgOmOoqnrTRJYyA1BtoazGrdiQa8tTFYrcGN/nwqr4dmefh/BiQMRHTqA05SJjmc1HY5XDaH7ZqCPSmjgtg47b7WTACK3alCdK1qgzbjjNQ2aubNFZGn5aD24vv/275pJkrmKjMpomOpWKpiXzvOv6Vz34g0QI0xNet1GMZMy/n+XOl2BFo2GA02nMyJUmbLoHIJ609oYxEut1dbDWKmsrey6UqmvA39LsGInqTY9nNPaJfMmcKM9T7luadDULXmoD6+bvO7r/7j+OuPfx4//shni9DYccg0HUfSiJtxW6aYLH39UvzNR5ngtBlnDxwiScDFSLpzgLQ02oWjo6TqpG76mmpWSe9Tu140w0KOqMyW6Gttq/vB/ZRZoPwZkO8Z95n+0efX16LbWQpoy+KF9T713DZm1cp7NsUUyvcTwKD+vxZf124MZlCoarDOsKr+DjGl7U9uKQVceBwq3EHt9HMUQgbNf1Qs+jIPjuvILcs/GrBsKmtgkvC5ACbpf168AiWA3JTq/8gurh2BljMYDUj5oQUyJckJndplh9/87u859Laxq0EPZnVOA7agVstAObDvDB67a19UMNXbaFofwGiVrY2305NKKbqdLpjH56tdWuNtMpWfQVEGZHVqdp1Ijif5ErRErFP4emttqo6d9S5+CNLWPgSJnKnbyImt+G9mWkgDFRFDkBwaB81e/Gcf/F0ABFbuefKzSRyugNSvXFfWOeLJVwOPuh8LhmkEBCMeHwIeH8LEfnGUYK68HxoUjwGdPr++/xrI6PbpbWur5wlngGONxRM6J/d7at8x4GYBewalm2rZ1ELQerFSC221sZ5Csyw8yUrWW8Wy6PeYWB499tgUqlsO3QxirFpY2c7hvjf+pVF7rlTLifpysrk6r4tJ/bOf6Xub72vNfuVoLAaN1ln5m/Y9ZNdQih46358r3S7/lImXyDQ1G11MYjmiX401cNZg8EGo30tpNeKfCrvUk30dycP+fx4I+LOpSaezOrFTgI9GJn8tvqTjjDUifPz9AA/vW+dgyCtiFMCEj8/t08d4QmcLLQnrXGr7leueWZyPr3PlQ3EOZ8qwVh/LRHQ8ATfrUKzqjE1hrT7Arw822HENJHY/sGmh6C898aYixFzfC+4D/k35dsbh6Ho/jgzi0wVkFw9Vuc6ZczsLrIMBe9o5GmccWVQCmLHOqfy/Nq1Z4f/1s9BZgy5VQF6f7rFJjAsArrFFjqUMmAxaTIMV5xQb2ToYF8HrvVpoO2U188KLA9c5mXT1lKnHnrxfrZXJACXo9zmBFddaxBAxrPbw+69/Ob7lnf9y3zZeCTbKx+I3F7Gt9SyFfmXDWt06W+iJGKjQPmUUF//vNjA3F8MCMKHcOftjXOl2xLTsY/wQ88PrpIw8MS+NKm52qWjCTX5rnSWSM7ZmsWmOBGmtxdzZYnDPAswSeJSABaJ/0SAC2AxKWKeSt6l/ssBU6w/KaCcjeo/5Bo2JvpZ2Rq68f//H/sTGDMa/ePLb1Ko7rbwUgNHsBECTcj2A8v33kRiS6EOxGve9p6iOdTiQGJevg9tVn2usBWI3WdYQTTELY7Fzvq6xfsUkNxD9zyxWjrjK27GNQ9tL3Uh5/vKZ2U+flEFW7mdIe1U/x1xZWp+Hv/NDKP9XbivNlJTMWeV+qGr/1FWCa8uRZTwhJm2L0lKIK6KzSks3PaZI7qg0YXIyOV00kY+5fuw05YX5BjA99kznZTGj+zJ17TWILL/bFIFUMizEplq42dG6/7DtqMc3mPZhAqULBoCEF8YQ4f3hIm5tU/7V2i2kV7k6vNUpAWG/CuhDUEDEyEqWjfUYPKC3MwesAR+DTFAUhVLqENiOpQiSx5XifnqVXbol2Ji+r5mO2nRkDU8Yw+6A6CN+45nfiRgoudT/83d/C0Cu4PxvnvRMaUMOiy3dDMxI+JgBWB8COudkwrznyc+WMEzuL24DA5b33/gdEhnB9ivXPRPzOdW3uv2Ln8SPfPUz+DdPeiYxH71HpybL7CbKIcO7PufWIXAxDv/WLAi7unJ+nSisSj3Ua3ecZnJ0/9fhyQykylpUpbBWb7ufaeBU63DWIcL5iLge1LZZ+1MzUXzu2h3JGWs1YNEWfYDv/WQUCu8/0rwoFi5HnWStRECQB0yDFWsNQqDjjfOPlKJTBsh8DlpEWbTzBsNuD9d+Ywzzxpki5FzrCvXv/coAsO3HjmvgEnyAhZVILjGXvjvExWqM9HO+x7jS7Rvjab5I5lqLEKIMIEDKhui9xOtr/+mlzo5LQMrKCF+7IfSE0drNKzk2LfoESspV+/67mBmYFoAzQRKTaQBRulGmXQG0T7nfpoid8vvybWQApdusGTGLgA899/npGmjgP37VDP3jPf7sBibkl554E441Fu3MYWd3kBTkv3LdM2UFr0NfaxbMJVcV//3vnv5c3P7FT8r383kzcjdq1oqvRU+q2gXD22sXGgEZ2kJHD41z6VAiNAaztdCV78cmz1ad8E+zNaQzCSM9jN6eM9BuFuDytWWAxedkUMfMTc7Ym/fhZ0Qfn4+9TonvQozAUD5Xkno/LUqij/AKRIxDnMc2FZkClJqI/ZgVDWJEszICThm00I8H5nl4/x9vuhNPecv/Z2MbrzSb6isBK97DtU5YFgJ91f5KQ6Tvg16cavAyxWhbZ0c6wItpR3layI5AywazTS10S4OWDZI3IfooVT792l9SwMLsQ5FvwJk0CNM2evLXg5z3dT6VaT2LzvJZpxLnY7rOwaw9uio6R7dzyvQkp40nNAZZdTI9oGSWdBSJnQBbIa1CAygxIJATfrVpkP+NZ34n9k7tEQO154VhYlACUHQPR/YwCJgrMWbdVmA6coEZl/fd8O0k+nMUrsr1Yv7sg7+L993w7WngteDc7Ls+FACUomDG0UAaADIDkRPD1axJ6Q7U90WHImsgxb/H9azyfmN30qgbCpsScOtj6/NqMFUzKBmURAC5flYZYVUCtbptIcZCO6Gfe/3ZZJ0ca8t3EWXYLAD4Poy2YaBkq22nBKZSBmCC5QGAZnGZJJE6BON32yi3EDNddqL/64ig/XLd1N+Jq2j4BkABV5gdaVr2sVLgljNZsqq8CEG8RO6humw7V0pl4xwkWjugLcSIPgRZWUsq8n3oetL2TAgDFU27cHakTVj5UNDztQZGgwL6PIejarBTh3GXYt0yBFpHF9R9I30Wgogzo6dimNynf+Yrv0MRRAO5wEKM+P4vfRq/9MSbqhpA09oT6i/tPrASDs1J6Dhx1lSqcflc9W3Wz+TJ17isBXnV1z9bTO65f3N9J9a95Pw7JrnvuB/LNvA++pi8HZN7U6n9NetS61XYZcP7bIo4mtq+bhv3B9cjYuAyVbFcn8vHMUtUH5ON3rWgfqL0PQOUPDlOJ5GrTVdwpuczjPZx6Xnh4+v8L7UOR3+u2xHWlz6X1PmYTi6nrzkDPos6gitHbW0GLNo2MV3WUoi5a3Nkl7VmBCovth1FD5EdgZYNxsI2FrnpF0Ie4iTMZcDysR/404feTi3qLJKc+Vy3o7VWJgzSrIyZCU2766RZms3Q4Egn2sql4HMeCmvKCYpXuDnLa82oZJ2KBiX1yp+vc0q/U+5TgilN72tRpQzqPqJfDRh26Yc/e98N3y5uIO3eYleGngi5j/w6F9Yca6GCTC56IqLKvmV68f/4vFsAUFZQri0TPIlJdc0k3cfHGitFHzV7pRmFTYn+dLi4BhgLZ/GEzuKq1hbb8znZDaVDovn8DDpLoDN+NugZKNurP9c/9Fmdy2WsUQFQMU+1S7HsO31ObSFGhJQSQIPeqZo1nBukNh29MvrOlq6I/TQYPGnqsiJlyoP8DgZPRRiDDxhWe5PnvhKMCyduMu2iq0W2/D6VmXHHNYg2/c/AxLgsFdBg5UzFMS+khQv0c6XbkXvogMY0rHH5BXCAhC0Oq+GSZcZlNxCbnhRjin5q9aCoXEjos3ARyIO5gAKP4v9iNeM4y6cRPY1fY+Tn1dT7eDIqV7t8bNHOTLiM64FCR/o4irkFAClgyG4ZbqdP4cjBR8B7ARibQld5lcfn+DdPemYxObILS0cXdSGgS/0cq0GSgEv+X2fw1NsAwAe//U/COIPbPv8JKcAogk513T6JmxksUGhyWQ1a1x7i+7Cb2qGF13w/nDF4tPdwJgIwKVy6ZGPqNP5sJYuWP2ONjdYhZU1L3n/qVrDLR7Nb+rvx9iW4Akohbg7rz23V++hIMtaH1VoWzY7xbxZ6124ftkLoiTLEFsjvbwgUbj2eVDcDIB6nqB0EtmwHhH7A/X/nVbjhrT83ud+VZmU4c+6LunqzNk7Dr60UOI+ZmEJHZHMCQd/7Q2dajozsiGnZYJmGtSP0Pg6TK2P6D9s47fgmq1X1eYWmmYNy9Vlfp7ABFf2q6eopG2skDlJWYDzwnGlFU+cymdymaie71tiFVFSEdSWzpJmomp3S1a3ZHbGbGBGe7GJF+wd1XhbjbpqIoo/40HOfPwq1ZUastpJZKfUf9SnGjMN4m9wH5d/8c6b7qfern4Wpbej//Wns+jmqXUf1NdRMzZnONcXYTa3Ia3bsQtvY/WEl+oi/54VEM2/QzJvi3WV3k7+C3UNT40FtU+OV3n8jy6WAZZ1EdD+weCkAS0SOIDrnn0Nv9YW3I6Zlg/m1R7BuNNHpwYILKDIYuFS5WmqraVIe1MLuIG4jbmtrrehY6rDKwo2iRaYpURpA126shbMociIYZ9DCAoHzYuTwU0CvtDcPQmzR5xVo/iz3eRyBsSjMQ/RRBHq6bRwayvsFJWQM1XmCrPDHwmI2BixcIwiAuGkWfB7kPpOMnvtMzgyoYghSBdi1DnERJYS71vMw+9K1TnQ4Oqkfb8d/dzYCsKJJKRmIUpStj8PXm1mZ3A98r3m7OgpJt4WFwfW5dBu1S1HnYam33XRvdNu5vfttK5FEyqYASztvhNH060EYlv1Ylvp4tlo3booiKt5nVQuHMuSmbZSujgq5WnGL+lWPfmd380Vfpvb+G79jpAWaCm3WAQj12Cd/WzPZv/WCU4edj47hqJgij/3mEHPg6Nxb53OMK92OQMsZjENQA4vwXC6iFtKEOFzigol1wT6XgIBfe5q4mihF3wKLQV0ZvpwZhgxWyG2BURhuSUErKryqgu3XHi6FQ/NEU+dZ0ZNPHwJa2DErETczSTqaSefLKHLV+CiAobjufUBm9CRQpjZOAxYGYTl3S8Qvnvw2cYG86uufxS898aYisqMGLDqfzFS1cAnbDAEBNgnCWwFcrbOkoYkxJdLLYZjU7+ItU+6VWICGYw1dyzh/Ts6gS5Wg6Tue9Kng4rjNY6FuzpOiP9euq/K8OsS5PHZd24iPxabPMfU/QJFXGjyfidXRFtUBGbCw1WBF1/Saeta0S0hbvYpn8Krzu5THSG5gaxH6AcYatK2T71zbyDv139/wCnzz3b944Ou91FZnudWf6crOJVDJ2x0kj8qmekIFE92VKQwYINr+8Mb+iPNnSq58yHIEWjbaFLo3bYMYYqJgLYxNk/uKVr2biphdbCtyqbAYVE26XD7ddW602q/dIPTCZmGbSblopkIImWWRFQ5rR5RqPz7ewziDuVpRjtPz80RFKwmtudmU8l4DGesMfAKVU6xXDcaA0l1T94VxZfs2MSxTYlMfY1HI8Ee+mpkXHQFR51m57fOfwAe//U+mtk8ANx+hH0nXOUoq1jnS6BiObMsao2F3kFBosmlxLE/arHeha856FRLZBjhjCyCh86Rw1I7uE74+Bkn6+FrTMmUa3Gz6rtSfbN5+CriwvofbUoKp8tmsXXJTY0M9OWpdWW1TGpf96tjo6BcdnmucgW0bWjhUTIFNzwdbu5yjmc8m23M5W77W8rrJxtFCdlOfK7BXa1eKfFxAlZdLAxhy9xYLuEsUNfpH2Y5AywZznZUwNx5UOINls2hpwkgTsWsd0AI3/9sPXJq2VixEnX4eoDDeuawmSAgqjAvKlUozb0bpr13rCteScRaoImQkcoj/D0aiXgDKCFuDJNeMk7DxalYEzypnTu0S0bSwBix8TD4/g7HoA1znCrFwnXMm12Aau0b483oSZuPsumeymnEqr7+MboohSCQEARqfdBSZZZGkdslV16/Xct0ulvlYqO0lq6FZDx0BpPuBAQuD5FzHKLuV6vIB/DlbGQZfJi/cFNmj2ZzMtJSgMp9rf/akBjmli6lsx5SVbktKWsauxU0lNfZb7W/OvD0FjCo3Rcp0S5M1M580uRpbRhE1HWVabpbzjW253OwD33azLEjYxK02MW5ZNQ6NtT9W7csRRUHGMmFiuSSCG2vggJJxsc7AHmI4zlFyObIj0LLBJJxXTXDkz9TuE/rfOnNJEbfOVzJVYNBHSoYG0GrfOoqGcB3kBR2Fbzo3Xdk2reA4Kqme6ItVqbdo5lltr79jIMJRSMHHIgJKAItM1EEmh6mIJteVAMar9ujPuACebrO0V1HEtdUAhuswsd6CdRwHMemHobxf45Wk2kcxXANfmyX9TrfVynecb6bf8xQC7gx8YrAZKDE4yQwEsx503oUzKpRbl2bQbpsyHT/3Dydw04kFM7NT9qc+536hyHXq/nL/bKX7yRRgZnz+cp/p9pUWq4104cXaNmlZorqOMwn3CxGuiq7LxwpJCJyHceOtgBjrOvjkvuB39kpJ6f+Bb7v5rApRchQjcHZuoVq3okX4NVvFkgDjdIj7wd75C2LxAqThPwIt37jmWlLj84QIMG1P+RoYuQcf0CwaPPtf/folbe+oAqpaNdYrRxarAlB5DMrBmLNv1r7iQs9Spb+W5GmOKtlORVWEtUc/BLRV9FLTGdgEDrn8vN5fgys+q9Ya2c4J87PJdKTA1Hda78I2tWrnyRsh4M//we/i3zzpmWcUd3J7JWRy7UdusrptdVvY5aN1LjriCSA2y7qUryYBPtdEWM1uJcGuqyZ10q4QqFk4dv1MXwsdLme7JVCRQ4jH+p9aG1SyIxq8TAGGDDLo+DWDo91aWgis969dSKVuZuwCFDbMlUJtbWX+j/L52uSmyPuGkbunPhZbDBGkaso5kYrvE7vQLDqE9VDoXPj7EMIVUzxxCrDUfcIspM4UXDMsxfbVWFYft9QhTd9Drp4txz+8LP5HluzKcnAeovGL4NoGtm3QzDs08w7tciahvwD7RC+tX5MTzOnJVYs8ta6CTSJtVLSDa7NYdyoPgl6N6P/5b9s5yhqpVi96H9e6gpEiQTMNwu28wWx7BquyDevquPUgo8PR9e+6zToLLodtT9cRqcDZhDi0Tsqn2Qggs1lTds+Tn31GPYFfZ22CpqDZOAFefW+4b/k5zG6ycX/wM2GcgWusJOTrWofjV82kqCVX0taVnZ3JVaRzcjvtYsoJ5pghGUcNlUnmiutXQmHdrwx4dJZlzfJMVYfWpQBqd9XYHUXfTZWdYNO6FU4QyJFd/FO/N9L31shPDFwbaAxWOXEZjy/GTTO4MrEqt1D9LvLvXISRQMywu8bX3vn66Yu8jEw/9zxGABgl79P6uZGux+n+Maov0thtx+CvZmvo3cpAyHUujZPp+BOJBC+WBcQL8nOl2xHTssHqF0ByJLQNbNcgrAf4foBtLdaPrS5hS1MbJyaAKQEip+D36zG7YJ0BkycSvqlWIZtzHbC2Jye1YtMZYC0A30NqJDWO2KziGD4iOqKy/TqI3zqvRK2sKl1nMezWxc5y1duQzu+6phAMbxL3UntjnjDSKopdKuksYJaAweCffXAzWCnbhkIsDJT3jatOf+i5zy9cXbKtMwCc3BsAcDa70MLai+tvSmfkq4mSP3OdRbvs0CwahLXHOmUE1gJdgCOIMrOiQUJnkSKKWJCb2meyTiYDlhIQlnWRMPqOWSwCKHakL+I2llFRU3qVMhQ7bzd+T84mokhb+azqz8eF+ajGEBVetQXQn14klAX8QjF58ztRpynQZpy9YpgWY20RHTT1PTCtFzK21KKw9pCZrdH2iiXW74tma7IImjRDepw4LONcK+d7jCvdjpiWfcxUYMVYC9u1sG0L2zVwbQPXNTLxXiq758nP3hh/X0+orrOTYMRYW0QD1anIjbOjFOaaAbHOCFgxagXDDEztM6btkvtChVRz+3RtJz4f76trq/A1ACiSrzWLJh0jM0kmMRK11cfaBM7y6t5Mslf72Yvv/2+5P4QpMpMuNGDKPRAyM6UjtiZcBUYd3yZdlnEW7bF29DxIWGyX75czUCHpuU5RzWzU/x9rLI41RnQtvP/Ub/o7gxrN5tRsDH83LltQHgso6xtpYKIZFn1dtU3deim2OcFgTZle9ZdC0bE2ResqymNMuFarCCNO0c8TLQMX+V6lLpD3Mb3XD/3vf33fa7hcTIMT/bdmvkRMW4wXY40dkIDLRN0gDRS1hmiyTdWYdmSHa0e9vo8VKxlOprbuEb1PAIbASre9dUnaN2VW0eu1u+Lf/7E/kbebGJ116OB+ZqZoVVsq9fXAwj8aFBHImV5J8ecMZniQ4Da61klF5unBnc7Dyb9qF4scp7Ppx2VwWoCBciXlmrJu07kan8t1bqOAW7sHGFCyW0EASTEh0ra5ZAFdfztvhF7vli0JsY2ZBDuUsC6ga8lFR3WqINlheZIf1ZVqLObOomsdjjVWIog0KDnWWOVi0rWPTOHeIbdUCYpq2+8e1C6hMXDJfwMo2lTva01yoU2t5tNnAmTseLvpd8xKZXg5xkRIRx2Sv59pMKMBDJ2jBCv6uysBuEyNSdp1PHYLbb5XOjX/eJvy3c/H0y42zbyUbtzDMI4eOt+fK92OQMsGm5q4YyVk422648tDa1dt9zz52fI3h736OO2y4NUKX4PoWtQEqEEGux3K/ZnVyCxUbcxoMKuhVy2cU4In49pdQsfOtYJs59At24Ih4QmaU6i71hWrMHaBcTsYAMSkQWDLbIxmWnRCKSf9qosl7qdd2c9u/+InpS3Mmtz2+U9s3F6zMkAOrW2XrfQPULqAXAIczTxfG98LEmo2RYVu3jZ6qp8VfBRNhesIiATlJlo2ucI3uVXyswJQhuWudQWzwcBnqkijZmv4HLrydG31/rWxi4gqWJcZmEt9jnZtlYU5N1U51+/L5nt2MFCr9RbRx2IijQJQw2gfbSWwGVeHFuBiLUwKmaOK5gP8ao3h9Oqy1rfUNZ0ATAKL2ko32hQgzIzZQYDmlJEI/nBdbWedsn/Dz5VuR6Blg9muKUIJN27XNphdfewQWrTZatfQJn+8Xg0yG8GUcu0i0SuYTTQoC9Rqn7umZjVwEe1EwQCUAwcDmmbeCKPCE+1UhV2enJm50bVg6mMHH1XhuyxCdq0buWmmXC7RR6n4fK522+c/gds+/4kC1O1nxTWHIGH4HNlWrzRdZ7E4McfixFyAiu3y9bXzRqhtEfBWK38Gguxaco1FO3NobT6fJJJrMnAtazVlXRXvBxAr07V0LK443lo7WRVcgxk+Jn2Xq5XrOaZ2/zBrw9uwdqV0N9GPVb9rIbZ2E/N1Tk2GZ2JEuI83rc5DGAOV8vhl0UYAagGSo4T2OwZ/P6zW6HdWCP2Ar7zt/33Gdl8K2xeYFMEQRhZU9Tul3eC6/6air/azqX24HUd2uHYEWvax6ZBFWrUYlwSRzomb6DDtfTd8u2RY5QgQgAbUTXoLcXkoF41LET+uq1/20n88ZU6BixiiDAq14JBXlc28QbdsMdvuRG8CJC2KNZLMT7e3WTTijmKRaV34sXY98WStjVkWBmTdsi3B0sYohOyK4SitC2E6IqK2Wz/50dFKe8pfz4nyuM8ozHwaDLGrjZkrPeADla6neD6s3CsGh8alyb4ptUdTWYSdURFOytUyqUlK0Uycw2fMhpSAXIf1y3Wqz5ghY42NZlJq9kwfL7OMuQ/q+6X7r9BdTLCPMWTRJv8EHw6UBTefY3z/z9YYsGhgM+yu4VdrfPkt/+s5HfNiGfc334Npt4/W6uRswdqtu18unBwNljVLErGomK+gXG41KDyTK/1C2lH0ENlR9NAm8wFhPaQ8LN3oa8obMkMzH393se3fPf25+SVOvzODsD+9SZN8REDto60rIIcCyBSTZspTUJyrB+rS71mVn5I1iSuKMgs7a4rBgaJXAmKIGNZRfNcth59fPUe/049S9RfROGoSjyGmWlEWxtH2up+Ms8Da56KEakK92L7qWz/50TNuwxlXjTNwyIxVHkSpv5tFg2F3XANFu/1c69CvBsoz4QzcOlDCPxvRsBB6py9cPX4n4PYvfhIf/PY/Cd/75J6ibbutVrajTMeUD4bbpVkRBpWa2mdXlwPn/knPWNqm9VYKVQKxACh1fhsdXcTG4MU4g9ZZ2HUNpPOzoGtvcW2uLPzOIbYWAaiuZao4Yv5uDHLo+5xhW9qTUsfX0UNTk3XwOV8LkAS5gDretNs2eo/gLPittqkmUb+zQvSXb8IR6df0Nyd50882b6fHnCnTjFRAFujzZ4WQOeXGoe9yWYYicms4vH47ih4iuyKYli996Ut41atehW/+5m/GYrHA05/+dLzpTW/COqUqZ7vvvvvwkpe8BMvlEidPnsTrXve60TYHteCDZJM8kx22bxPIbhSm+vWqZJPpyT4PyJkJYUEqJ3er6W49CNcrGGZLtGhtauXDL79L+VhqViD4AL8us+eK9mJBuVy6Y6zpyKHWzAiQ28nB90GYB2qvSTWjSoapBGpRMTV6tXYwP/eFtHogbRbk1okhyg+1rczPwWCSxZ5Zz6JcJykfD7uG9OCvyy4ABJABiButjvICSnEzf68LZOoIJi14ZldXed1WnmfXWHEnaZdNiLFgY7rWZb1K60o3j4BWM3pH+Jg1q1EWDFWgRLkT+X896U0Zv1d0L2PxubSHBc42vyPMtNUr//3YGf5+qgxE6HvRYUhywvR39B6hH/DFn3jZvse+FKafGR43AEg+KA1Y8j55HKq/O9O55O8NY50GNofJsgA54/n5/lzpdkUwLZ/97GcRQsDP/uzP4hnPeAZ+53d+B3feeSd2dnZw9913AwC893jxi1+Ma6+9Fh/+8Ifx0EMP4ZWvfCVijHjXu951TuetU2TXFhMbM6zODRidi/37P/Yn9n0J9/OrSxQPKLOvVYMAlyqYcknoqCAACCp/gtavdIuOaO+1PoaVGh+8HX+uGQ3nXHJhWPQ7vVox0XFc5zDsDmiPtWh8g92HV2UbnUW3zGWSswiR8sNwYqhhNYxWodwn4FVVyjTLx6375TCM2aGp6yBXXBS/vvRhy8CTBm3v/UbWSGoyJaDZrwY0i6bI96F1PtzPPkDywDg71knR88RVlMuVr85y7Nd8nVSUE2tfsAyaneF7MOwOpGeZCVcgQJPXXzKpVWBoCnhy0Ulu+7j/S9dPubNe3dOzw2Csrnej70E9kdaht1MgqGSpxloMoyZoabtKwqZBWPQew2ot6fzpOh3QD4c+CZ/J6rBxzsTNzyy72Grh7f7jI+XFCSHWRenlXBKWbs2ov3Ob7OjcR3Y4dkWAlttvvx233367/P8t3/It+NznPod3v/vdAlruvfdefOYzn8H999+PJz/5yQCAd7zjHbjjjjtw1113YXt7+6zOeaaHket4GGfhV5Rl8trXv/Msr+zsjQdz/huAchER8Pi16581KRg9o+uozl2QJsh6gJhaObK+JfqAte9H52KXEPcrRx9xSQSecIOPmG3PAIyTQUVPlVi9j5JOmwo5hoI1iTJ5prap1RgVg0w1iFTODOcMhlU5eenjff+XPr1v311oe+HHPoL/fMsLEB2VRPDIoMSvPSyQxLhGQKLO1MztJ8YsSI0stppSdz4f2/eh2MZ2DiG50aQmlCrzoCeX6KmAYwYW2QS42rJWFAMwPgYA2AmXl3GU8K9ZNLQPFG3vy7IPWrhdMBzqWpqOAFP0NIFpcGEUExVV+zaB1xqw7GcHXflr4+e1fie47zcxMJpVYfOrPQCQbN+ubeSzy8Wm3Vvk0uF+ABID5fQ2iZFKY43ur8KtyoyagM+pSKISYNYMi3UWOES3mg/A+a6dLoFT4ILbFQsTH330UTzhCU+Q/z/ykY/gWc96lgAWALjtttuwt7eHj3/84xuPs7e3h1OnThU/QJ4wJYkar1pUyGyQ3C0HcyOdr/37P/YnxknfbE4WJ+HKE+GaH3ru84v/Jwd0Rd0DpRitXrkWbahWh8yYnMmiz7VXMkNgMD8xx/zEHN2xThgBvYJiJoHdGdrNYJMrpZk3yR2UmZ7oozpeKK5P2p4ilngCjD7i9i9+8ozXcjHsez7ym3SNc46Oyqv12uUD5ElXu+em7pudEAHrfhSBc3I/soCXzk3ArzvW5rByEapyraP8N7ka69BdU7iaxGXX5iKdxlKkmVEThxaSt0kAzu6bEhDZwgVWnxtQwmSXRbfc13zMoh+cEaBN7cnuVM2G5fOMo89YgHuuVruItN5GlxPQLiCAszCPE88JS5MqQIcDusMvtv3nW16QxyBflkeIPgionrJ6LAJyf02NSfsx06P3qy4hcMgsy5F7iOyKBC1f/OIX8a53vQuvfvWr5bMHH3wQT3rSk4rtTpw4ga7r8OCDD2481tve9jZcddVV8nPDDTcU319OWQ9rtftU1lr6vb/SXh9rk/uAB4rJ6rIVG7FpgJ5uRxq8Q85NYeu02xOTsf5trZGJVwMeanco6rfQ8bTmh3Uf0/ll9MQI4JIBFm3c5qkCirlgoi0BqDXCPsmKUdHd9f0pVu8211upjYGC7sOateE+rBOcje7rRB4OYJrt2mRTLo36uOzCKQGHnTyGjgbi/5lB2QTENwlm9zPOynou48tUO8TNpYqGMoApovnEZVQyBJeTa2i/fDT1/wcJM6/tXJguNq2VObJLY5e099/85jfDGLPvz8c+9rFinwceeAC33347XvrSl+LHfuzHiu/MBMMQY5z8nO2Nb3wjHn30Ufm5//77921znVnS9wNCCAj9gEfe87cOctnnbO1yOlJJCyCNs5Iyfmo7/m0Ula0pVB3i61orAlh+WetwZha0Fq6iNtdS0SHMrnOF2JAnVjbx+xcr2yzonW/PJPxWmBmbwYguDqfDuLWAj6tyt/McSs0r5m7ZCuNgndk38dth2Qs+/J+l/Va5e4wzGFYDhhWtjm2XGSu9qrYpuojvse3K+zE1gDeLBt2xTsALTdhGGBd2sTETQWHpOdxc9DKOSgdIHhibGSJmaDaVjWDT0Ux8LqAU/xprxeWTGRIzOgafTyck1O12Xc5pUzNZzHLwc8VAhsP0tQhdg2RAPdfpWZtK219nad0YAVRtV2eVZjaH9XaadWFRLjEslKrhTHldLqVNtUtEyhMhyXV/H4TVmgKbfOwz6WMOu9+4CO75/HwjMC2XVNPy2te+Fi972f6K9RtvvFH+fuCBB3DrrbfilltuwXve855iu+uuuw4f/WgZRvrwww+j7/sRA6NtNpthNpudfeOVWWsx7K7h5hfXL0wugmmBJJDcLRvcOCOB4ASVbVwZWtsd60YDAW8HYHIAllWnczBpEmE6l1PvY+0RwMLATRoBmmz9OsDDU0r6ZQvfB1gXsd7x+XwIQAoZ5X6Qa1NunpEIEhbW8bYeJokTv+cjvznZpktlUxoioHTxsaaI/i/7lHLpWKx3+tEqkYEohS0bORYDQQY7AQHtspUJOWuReKKMCCnqyzjSo7ilFQG1sXEEJoAsCEZiCHyfQqbhS5eR93J9pUjXAClMGSiZQ9ajsIBTgH0S13NPsKZJP7tTK3gKES/fI7oPY+BQt0X3u2YY5T4oRnOKmdLt0YuMnBwyi29DPxRApT4/QHqWdjmHV8DGtpde4vh/3v690p+ssWLjiEa+/23l+tN6JH1vatE/gH1Zrv0EuPy3hD4fYp9RGv7zAx3fCGn8L+lTevLkSZw8efJA2375y1/Grbfeiptvvhnvfe97RyXBb7nlFtx11134yle+guuvvx4AiXNnsxluvvnmc24jAYHcTZxQrp5wYwgXXdvy//jof8EHvu3mUUSDLuS2H00tk1BnYWFlogLKF75xjawUebUhEUBpDBHmImgXReXGAQsarQAXGZRDqkjss4hXR/bU1yLhvqkd3bIr/fLOIKwGGYzixMBnnBHgxCJPucY0aVxugAWAMErBp77x1FYBgdB+eyPiwiI8wjl816//B3z0+24t7rlxhp4FPwBe57FIoekuMSM+szh0HmJtePsOwBoQdo6F0sYSOxPSs8ZiazpHkO04n04LAgeZkbHA2sP3KVNveu7y/bOIYSjdPdVzY3woxLTSJZ0pJkHZ35oih5CO2HI2s3ZAFr+PQ7dL/RWbfs8kYaJXQl713PMzKazWRN4XBiub6ngR4FTt0pqM6m8zFU5zyObXvsj3JO+2PKul8bZFdfYJkELHMkVFbf5sKuqr3M+OmEDJJn4ZudX+qNgV0eMPPPAAXvjCF+KGG27A3Xffja997Wt48MEHC63Ki170Itx00014xStegU9+8pP4D//hP+ANb3gD7rzzzrOOHAKyKJWtHhR0aCj/Poyy70JnVxkjWYz7fb83LToOasWn87JM6VF4u6m8EnV+CZ1jokyzryJNVMI3+t/K9qY47vhx5DpC2v1lnMVsu5N8LFoomq9jwu1ks9amGOTSZHg5AhYgrwo5Bw0bt11P0sblwok1q/HJH3wRnv+BDxGbotwf7PLQ4e+actelA/iZYcCit8slFxy6Y11yuUwXt8wTdBmq3CwatMsulxAQF6GRNsy2ZxJhRu138ts4q0ocZACcn+vs6jI2g1gGwPo90bmHss6n7KvaHVRrhWq9VXFfZfuccZddTVOsqH53dZuBzZoULdql3/n5kRIAXQPbteOdL4GNmUDt0i6fdc7ptMmmdHj8LmmQOLWfvo+TuinnYNtmcv+LZRw9dL4/V7pdEaDl3nvvxRe+8AV88IMfxFOe8hRcf/318sPmnMP73vc+zOdzvOAFL8AP//AP4wd/8AclJPpcTA98ti1f6ui9ABa24MNFL0CmKXatAeGV5m888ztH+3zouc9PE7udFLDyb/03T1w8wYe0WhV9hdKDaEBSawnYihDkDZl2a9MMEpAFohx1xOfTCdFCWpUyMGJRrp6Y9eDHQOC7/n//ad9+v5T2vF//D7j5336ABtqRaNkKMKhX6kC+H7xS/dQP3SZlFDRTAyR3X2cxRbNnnVN5v/m7KUEwg0GuHcUTLOfT4eNwkjDShzgRAVMEkBWw0qbyA/qeh7WXJIUacLfJJaajgPhcOrJMuzrrKC151jsF8idB4hjgy49KgLZJwFlGNJXARO5xW4JV+r2pYGm571QOl1EbLgPG4NM//P0JuOV+KAFcvo8c/Ve7BaOPxNZMsCyahdXaPVu9TwJqUkh4beKOcznPz2HYUfQQ2aV3Yh7A7rjjDtxxxx1n3O6pT30q7rnnngtzUrVK49/G65ffiQI/WiV8PCQfJ52PgEQzt0ASw/p+vPIwLgsFp0znOLHWIDqLYT2gnhxNxyvzcgBl7Qmt/Ma+eU68xcYMixZY0jkmoo1UUjWgDPvknC6kexhUKvS8miKXQpT0/szMzLZn8L1He6xD//jhJQe8EFb7+vP1ZreCBaQUArtIeN8il0hyyfEq37UW3mWw6lpLQFBNHHCuCDvVegztPqqBKpccaFNVaaBkH4RBCBn0RB/h4IQV8X2QiYm2ccKIcJum8gm5Nn/OoGm904trUAMYBuw6VT5fA/eHXonXOYhKULM5oo/bxjlnKFovazAsyn1LXdk0+JDvbfluUb+Wolu/pmrP1I+XZir4nR99MQCg3+lJ8G9NoUNzKY8O52IxNuedmdQdJa1Vzk1kJVRdu4xlgWZrwJLZlTrwQACNVWHuh8i0HBnZFQFaLoXZphlFCmn3D9Osoe8RvUe3vYRrGzSL8xP1nsm0D5Yz2wo70k+/yEytbxo4fR/yqtdZoMqDkCcwipqgGjY5zwaBA8pyyqnztS+a2xB8VAOHHQ0aTZrMtD+axY/NokVYe/jgxU3hOitVi1swXR5FN8HXHXxORscJpWbbHYbVMGLLLmezzqDvs/tCZxoGxjogflZoss/J4VyapDnySOeuMc6i4QGe9RsVQNK/ncsZaF1LmXWlvWll63ufwGWm5Qno+kJHwxZ8TMwRgQHW1AAo9FGzFE1G+wTE0BfgnHQsVn6zLkdCtTuH9eNreTd0Jmc27UbUeiy+B/ze1OyTvmchRcqFlAyxSLPvSp0GJ0sbMwW0SKlZlNxnKola+qxZdHBzGo/6UzujBZVmLTaxNodhMUQp3cHsLbUrFmwvAAEi/JxFHxDdtOC5Hu90NKFeyGmxbl5Alf1cgz+jktIdlnEE0Pke40q3I9CywbQPmFxBPocMhgDbteIi0vtcbGGWFo05W1KbrrUI62lgopkUtn7tZTWnV9NTyZhk/84BqyExOg5OARdgatCfpk8ZsEyFUdMAmvbteXJoim1s22C2nSYVa+HmFk2ijJl5qTUb9URAk1ZfiDgvZ3vur96Lj/3An4bvQyGiBrJWw7VOFTfMERTGGrScPVj1RQ47b9A/vpaIG7iUHXedo7QAKBCYJ18GOlooy+CVI76CEkMbZ9EB6F3p6ooK4NouTybMboRAYMakz3wf0C1bBB8xJCCdxb7qGU6ZAphNqt0BVL4gF8fTkxv/P+wOtIqXUH4Hj7xg0GBbg3O+HrgM/njVT1l5XSEIZpOoLWF8NghC+R1V98IJ69vKezMkd4ZrG9bSkwumbRAwHHr47v95+/cKkB12hwREU/h+6mOfFiDMtPi1zzW1EuuteeUapDBTWH+/iWGZAiAasFzqxU3A+Uf/fANIWo5Ay0FMo2pazftiwHbzWVaTX8QH+z/f8oK8slMvs6apN7EpsgpT4ERb9JEGCeQVKk8M7Gfmyb10D5XiSg4v5ZTbbAwkZL9qlcNtoIGfwi/DOoWYardDR2nY0UIGXL4+XplzngpeTbmORHNI4bkcoaCFwleKuY7qpvjeY7aYCXgwCcgaZ4CettWTYLNoCdyBVop+3cszFEOkyV8Bi5zXJubQ4QRWkMKR4TJ7V0e98DFm2wvsndoFgNH7Ua+Og7g7G4kOo7YTs7b36J60B7Dw/Tr1icWwyoyRa63oU3TxTWbhbOckcgloBIBoTRdPeMwUiTYovT8Uyk8TKecy4v6yIK1N7cLTkVPcH9xfFuV7xZYjYZQLulhMjP+27Vj4rLdxSBlwVWRk6Mc1uS6Wffwl3yfX2u/06FeDiGrrgp0aeGjGhYGm65wwhoCKaqxYSNo/j191bhdtXJ6ldgHxopWCHjana7hY5kOEP0/Ucr77Xw52ZSwxL4Gx0Ir/dm0Da23xue1auPkMZfGxi9OlH/2+W0VIKnk0lChQrxZ+87u/R/b72A/8aSVgzcJWHbkBlFEGuloyAxZtLKx0CdjoUGed/r7IIVEwMuMkWWw5eVQVrZUGC9c2cPMWXMiyAE2pb8jtE4VhqSdKAkuxiL64Uuy5v3ovuHIzp5yvQRfnZQE4g60r073rybLLz/hse1YcS1fWbpeUJE40JE4Lt8dhugAlQ3TzLrFfOSmbnoTmabXNDJAW7vL5WSRLSQ61CDVHgvF1c+QQt5XFyzpyTAtfu3Rd3E+uJXcaH0dvy8Jl7b5gjY3cD95/0YzuC5tV/VaXk6hFvuP3pmR28zGnxbU6LYA2Pncz75IbiX4OwzgaMKy96IqK/D/V/eK+bOcNuiTGzs+JKzIysz5PBwvwfWQBrvSPjE2KTdnEZPH/KTSc54Ijy3bXXXfhu77ru7C1tYWrr756cpv77rsPL3nJS7BcLnHy5Em87nWvw3p9dprCI6Zlg1mFpq21cPMOfrWGtRaeV/0TYreL4R766Pfdir1TlLhutj0rfLC+oN0NumWL6CM++YMvKulQZ2FGWTeVaym5A6IPMjjzABJ9kEy0QMmoNIsWw26faiRn4a2cV2kM8srX5gkzPa/j4ohBvi+BSSNn4RwUMQRAUefsXtLCOaTtxswO/f2pH7oNz/nlf392N+YSmes45Jgp7UrrkFaKYe3h5jnqzToLH0LxP7vT2MVmOwdj+3wua9Au57DtkO9j59D4Rt2vTeJvnghKQKPdL5wwjid/44y4gKiNOqeMheu0O9TJ9bObqFkkhs7l1ADDbsrlk5icXIIg91uzYAYza61Ya8FZhaOPqRp1mQNEC3dl8eA5E3FUK3ZiVJjpsdCreFOIf52rwXYo+nT0+cQE6hV7YtQkK2DJ5nDp/arZX0j79A9/v2RU3nt0r2DB9MLLOgOjAgu4z4AyMRxdQzMaP6bYZG216Pag6So4NDwk8H+YUVfxAkT/xIuoaVmv13jpS1+KW265BT/3cz83+t57jxe/+MW49tpr8eEPfxgPPfQQXvnKVyLGiHe9610HPs8RaNlgXAxRv+i2a9DvrACMKUTe5mIUHeNIGV6h6heuEB06K75f1hT0q4GiTdLLH30sop2m6g6Jbz5EtYopEzA5W7oeht0eKPKylK4DYy2cyt1iHbvTchZWbk+h1eAJTg2sPMgIO5QGZAvABwJdTA/XDANH3lhnEJ2pNDlXhmmxIgPINlV8BjIrZTvlekmuAHadWWfh5q0qhJiuP/0ednv1bLGOKzMH7ZIEnn7Vy71m4WSOAgrwq/VIT0SFK9t8z0OOBtIMBQNe0ujkRHSSl6VTbioVPcRtNm0joIj6rREXmGstIrt85N1q5BnPImArbdKF+7Reitx1QRKdOedkf87aysJRAtN0z/jvcU2oDat+q+7lBtdPUZen74E+swO6b+gmjg5x0U0Yt7bB+vFeRM1SZiK53ljjEz3rhcrrE8YkgTtOSMiglY5ZMlhay8IgqGaiYiBlU9279D5Rh+ntwyHk5mLzUYbY8zrGxbK3vOUtAICf//mfn/z+3nvvxWc+8xncf//9Utj4He94B+644w7cddddB86ndgRaNlhG9aX/kujmVBnVWkSXP79YmpaowADT6LKSYNGayjjLg36/GigiooMIbmvT5drZWKCqw1x1GXedsRLI4YEcTuxah3Y5o8FknVOKc5RP8AFu3sKvermedjkHF3crKHCrgVq58mTTNC9AeoJR0jxVRM+LViZv8x3/x/sn++dyNO7jKZ+97hcNrMW9xhoGEHNiugZ+nVfkZQmEcR6KOi18VEDGOADrdJ/bWeGC8P2Qwebaw7UNgqV2udZhdtVMwAMDlWbRFmJsanfIuiZpE9dmoqiSvFqnfXQiusGV4c1RhRkzuArpORT3Tss5Q2hVz+85a16KxMOKRbKwGRSmRYNMmsX9nNai8T3jewlMlQzI9y27OsZuKR63OMN3lPc+h4lf/8Z/NNrvQpu4xcKYNeG/ObLMr0MBYkNyHfPfdDwa2aI34q6WsRtZk2WcLaITSZCcShj4CKtroDFzW7BU5BLSIKUuOnlk+9tHPvIRPOtZzxLAAgC33XYb9vb28PGPfxy33nrrgY5zBFo2GL/kAItKB7C2hT8z1ororZl3aOYXJ9zZr32RSyX6CDdvipVEMUxxqOlqLWr7YpAWH6+BW1Lor87Lwm6iWhQHIGeg1VSss4idg03hyZSRtZHvJARz3iG2VGTSdQ1CP9CqtM0ZTP3OqpgYswC3LKXA3/MALIN78svr6BHNyFhn0S5n6Rj9vmXuL1ejcPO0ck9RZMEHCQsu0rMXgNvJZEnMSSN/a1BuvEWzaNGkvuR7M6zWAhAZYNZsgO1ogm2WC/jVXnFMl+4Vu2+Q9m+XjSz6fT9Qwrg51cahon9RgErW53jFNuU2cHi3a50AhmZOol7fD2iVwJfa62CR2TzvewHl9J6oRHMua6bYFaXPC5BrLoNu5X5J4k8JVU/MELOnmmGccgWVLIMd5VWZYmc0eNEaDNs2MHNb3Et3SPmlGMDundqjcWRBz5jO2dQdn6Pf2QPSmMv6on5nPYp+0To9oHQzcn6izPwSu8Vg3ngGcS4/mz4LbTPLnl11YzH54SeXO99jAMCpU6eKzy9EDb4z2YMPPjiqA3jixAl0XVdktz+TXTmc+CEbsymAchXZnCWRVwvsDmL3kV+tsfur77xg7fjN7/4eosQnBugiJXnFNmhFPQARb7KwzXa0uu2OteiWbarGS5Epw+6QRIodumWH2fYM3bIDV/vNdUGMvLSubSSfSjPvwMXbuM2aDemOb9HnbYNm3snqX4Bg2r4emEfh5c7Ctq2KlnAwzsElcWG7nIvLLoYgbWgWXWIdcrXe3/tLf+bC3LBDsJv+2b+Vv+tIEts2RX/z5xTdlleGrm2Ke8fsAgC4jgCDm8/S8577WAu2iZ1o4Lp8Tt4meg/bNgIiObzWKFZB9p93aJYLEoO2XPfKJko+Ca/bJgtrXRYZU1sMmjml/m+XswR4ZvIMTrFPul/o2aW2GGdGbgVttqVoo27ZSjmBbtmhXc5EIM7Hk+Ona5B2d7m8wVRCOiADbH2P9bXztcmPcm8AnLHbT7IBvPiS8axrDk2Eqyd/rubOwmQ2Zr1YGK0BHD8DtJ3ODj5OOsdRZE3K5cT3egT41OIToPw2m1x0HJBB13K4GXE5euh8fwDghhtuwFVXXSU/b3vb2ybP+eY3vxnGmH1/Pvaxjx34GoyZYBRjnPx8kx0xLfuYTIY1up7wY4aeqEa/7tH2/ej78zEGG/UAp4u91bWQ1g+vcghol8OVrTOjQnsSIdTmZFiUrM6jOz5Hs0gr1fVQaHZqgWyzSJNLm1fw/J12z9iuzZVoq8GBVzyaqdGTDFCudqL34PwT5Nsein7g9kYfxIfPhS1t2ySdzZXHttS1lnQuGw1euR9qd5ntGukHN+/gQM+w28AWch8X4eQT94b7Uh/LhMz0mEDuIg5B1xaVjkzrMAhMlNfEAmPNxGkmwc07YLUm5kb1j3GWdB5qImQ9FABhlwCICytgEDAIAHY5KwBeVH8XzJaa8KyzCJXGCy3k+WSGRiZf1lZU9033Q91vtm3T+7D/WlS/U9Y5BADukGoPsYbEr6lau1u2olNihjd4SnnQqrGBXGXjgolAHXGV2TF2u/F4pBdC9Rgl+yL3Y/F5cg3JM7QeDo8MtQAAkHVJREFUruicJ/fff3+hIdnEsrz2ta/Fy172sn2PdeONNx7onNdddx0++tGPFp89/PDD6Pt+xMDsZ0egZR+rRbW11oJzGzBT0O/sIvqA/tQp7Pyrt2L5F/7O+bfBB3THOlkJ59XsON9D9IHEsw5YnJiLkJaZGBYyAvlFt9C+/JLypjDQDDiaRYdQTU50rHLFlxPyjTMIAznqSrva0KJYFWt3Tyki9MX3uuo2s2ChHzD4dabT02f8d78mMTXdPwP4aUHy5W42AUtjjUziPKlpYKEnQtu2RWQKg0hrLTwDk5CfJzbjLJrlAqHvMeyuUxSMErkqoWJYD5mNrAAhsTYsaCxZAH5+2m5eXEtgPYwCTN1yQWyOsyM3lU0saLNcADuUI2Zqda3D5o2z1O6uQaeAiAUQA21r2ya5XBuatBRgYgDI18AJ3rjN/c6eAM1Sa2Qzq+Ks6Czkfi26UR8W1+G0psjmCbbaTtyoql1s9Fxc/KngC6/9YcnHwsZjj9bi1ZFMfk33n7Niuy7XFmKBNPUnC3Zzvh0NWJhN4jHDAnBKR0duszIBn4w36Z5mQG2BQxThAhfWPbS9vX0g4evJkydx8uTJ8zon2y233IK77roLX/nKV6Ru4L333ovZbIabb775wMc5Ai1nMO3mAEpxHD/AIfmEeXAddvcuSOjzb/+FH4DvA5p5k/zoOWES++0nBXw+YHbVTLKmsoaFIxpom5ioVtrHr71abXLW0abw0du2FbDmHIlspwSyMiGG0jevdUKik9hdyyRj25YmCRdkAuQVDv+myaWXwToGxTDN+bzZFSLhvy4DKutIn8HtcN2VCVrYTdcuZ3BJUNsmkOf9XmZZ2kYE48xMAXlFGX0AbJl1ePJ8zsKihZPjtnI8fl7Yxcf6rgDAuRnCupdj8HZBPTfWWngggaFWnpOgWBoLwPt1ctE0CC6xdunY3B4Guq5tEOedsD4xua2yK8hKe1njI4DK+oL5IDdKK4xqDUwK1rFtYJxD6Hs5h1Vic+4H1pIUwNKXCyPbttKW+nvup6D2537TGhat+arBSeD6aYc0AVNG8VzoldrIYuAodaGEuVvn5JGc1mDmjLi/Odmh6yz8OgBrn/q6k+eZ2bY2jSl+tTcCIzp7MBu3QTQwlcbIYexquph2uUcP3Xffffj617+O++67D957fOpTnwIAPOMZz8CxY8fwohe9CDfddBNe8YpX4O1vfzu+/vWv4w1veAPuvPPOA0cOAUegZV+rV/2sY9GUOK+kmOrml/9ChD77tU/F5bIAj9qVnrw2C2t9n1cfps3F6XREBkc0SI2PRPcDXnInSEinLcFIkechlHQ4TxZMv7q2kbBqPUgDEADCSfnypMCDlSsAi87LYlJfR+dE0De1CtXsgbiMqrBPzTS4thEQc6VY9AHN9kxcLaEnABn6QfJ/hDUXQ3Rolwv0iXXIx/AFUyX3a6LGFk+wARC3D7tSfD+MXFPiElytC7CqB/l23gkwYG0FP2cMDpquUYJe0itZ5cogcXcjz4Lt2mKyAhLgUOwDrboZVPWpJIfS9zBASEDGOAJhzFbEaqKffAadRVyl1bu1aEDPuPfpWtSYUu/H7dB9pQGmZrX0fnXeKM24cT9o5pTHs03XcCHtiz/xMsXIUqQPAxRpv9LmsYUK5NEYSK6jYoFkDVzHWhZXuPniio7Bz9Gwu6bcQ6kPm/ms6LOgouk0YKkZNf7+yMj+7t/9u/iFX/gF+f+5z30uAOBDH/oQXvjCF8I5h/e97314zWtegxe84AVYLBZ4+ctfjrvvvvusznPU4xtMhwUehDXhgVuLc8/XRTTsDrCdLcKZp4z1KoMfA6W6cnLwAU3XTl7TlM940wqsZqAAFJNO9EEmiqkBUU9y+n/NqtTnE5dHSBOjt4CaDIvVrmWhblN8FlTUDPfHlE7gcjcSKZbXLCvrEEarQu2209sV3/M+fXW8yq2gB3i9Pd9zbbpva3cTUL5bOmrDeCW+bFWCPAVGrTqW9ZT0UZ+f2qqEm5a20W0yPk32GlStB9pO6bCKZ0vcYH1xLm06YgtAmUjOjQH01FiTwUXtAnKTSc1qd9xBxi2thbvYxqCD2VnN4jKYmWqzLfqN9CResbi2g0TOTVnN2tSFb+v3n5+tIry5Ho+cHe13se1Cuocuhv38z//8xhwtbE996lNxzz33nNd5jkDLBjPGFg+m+NNtqRcAst+azbb0kA+nV+fVhr1TFLLMieK4UqycJ4X1cRZcTiAnWXKnagyFmCN0eIBGFq2NaFBrq5fcwrmxaIto+ZlEDvG2CKEAJPw5D1pORV8BkMFCR2/JpJEElOgh+hWARZ+ZDo4uIPoUtdLRwGh9Wv2n+9RuLbB+bEf81FeSfe4v/zl0x+d5MK76sHZfbiozwewTR5LUJhOjLQdoBvTM8IR1X6w4J5+h4v1oRv8bV0bGaHDE7Ac/E7U7RvRN3iM4W9xTYkk6eUeJ3fP5WEoHpdvvQLoGZiQLNym7rnRfTay4C0Cu2CDNRgnTyH2a9mVGqe4HXhwVQmrWbbS5FtdUX0+5OLj/Tvz4Pxi1/0LZF3/iZTDWok/pDGzn0CV3tU/CbIDcnLZ6hpsUEs3PGwM4YdEcuY20qLvW29XRcdqVFlCyXcXYvh6K7XWAgLhem8ObQrlo6Pke40q3I9CywQpAYkPx2SZKV7ZPDzkPKudin/zBF2F+Yo71DmsvUhKmUBZhy5RqjigJiYIG9CqlTKYWfE4jriNR9Opdoqe0yFExKex6sdYipsmPB0l+8bk4W/ShELIBkPBQrRvwfg2/2oM7vlTXqXJ8pPPp1SFHdhQTFVRkSTVwM/jRE42xFv/Xj/95/E/v/jdnd6MugflVj9mJpTxrNQCwXQu/2hs9l1onYq0Fkiulfp5rPYQGj00KI9fMQLtcyP1map0nVXb7AEmr1OZIIH1PtDukdofaroGrGZwKCNE524KBqIEUH7uZz5LuxcokrydwcQE4O9k/+TlzxW86vpf+GFZjRkrrZlivwqv9sO5Fe8SaoLpkSPF+qkgYLTQHxixadq2Ufcj26M/9HVz1qrfiYhiD47D2sJ2a8FOGZgZsrXLpMCuoI3lEO+VmGHZpXJRMujqKS48FysXM/e5Xe+ISsphmD7U7SLNRDK69L5mXw7BwATQt3wCY5Qi07GeaRtcUcZGwzNnRQy+6lnPMmPipH7qNRGnHWqx31uCQ5DEFnTPTchso/fq4iGKmug1CP6Db3oJtWwzr3VEkRb2qYbFlLhiZ+8KlR8ihEZ/5sLsu+mOKZtfAKDolFOwauDAbVarlwc2mnCDGWokQsimygwdvGtg62ARyjIpSooysmdbnCX4qLfrlav1qAHNdApATKCwLItJkwcCSQzYbtaovt833pkySBvmcB239jXMqCZ0GuOpe8TvD/9Okvi7EqK5tCQive2LsXI4cqle4AGCCai+y9oAjQWpXibFlBmvjrOgdiok0AQAW2uoJjDVENagL60GE4rZtJBcQW2RGQemANChy8w7DTmZmXdL7aHay1HBU7j8/XlBp9krfL61BkvZdpEn491//cjTzGfrTpZ6K2b12mSLFlE6HARozXSye5nYW1+Wzm0izwvUYJhGGE9oq/dzWEaLFOHYFjRHfyHYEWvYx/SDzZCAPuA8FeAHyi+99SEm3Wjz87r95TtSrdQZ7j+4Vn4WQ01gDNHnNT8xl1RnWXrJ5Fn5gBUpimri640uaIFZ7dC1phQ7QSkQL/fSqOA8GPBjmVSkP1PULrvcHckjjpm3barDQIkm9omeAlFfmKqIoDWIMYli4S0yAEwADQOpJnU/E1x/+zF9Du1xg2N1D6Adc+/oLl2CwNi6roJmKuuUcLcPGBd7QQop/8veNimphdxqbAJgKAFiME80BABgQMVhR7hw3L9mxBpD7U5zPOUSV6ZhdBNwOKXyJ0lVUTzCFZsKNJ3UOg9WuX9c28ApYFSyWiHI3JGJLLFOzIGBjdf8n1kmuUbGwDO7Ypal1HpqJ1O9KDWJGUY3Oyj2QxIqsBQrjfYZVOdZcKOu2l7Btg9Nfe5jO6SljbbNcAMguLwDFooiNgV0tuufnyrksquY+8dW1aDH5VJRcLf7WbbAYa+90Ru7DtMtd03JYdgRaNpgeDAAUg1h0mWrVq049uJyrwPOTP/giieBZ7/TgqrccHaQrPFtrChcHpwenNqiaHhWA4QHDWHrhmVrnATK2lNWWV49yTSGMKHf9Ugv1r0XJTEsrgKcnH6mFk7bz6wHNooOvXGt1hlyj/tf6Fk6WxX8X7oiU98Kv1hhWe0IX82qv3zk7DdJX7/6JYvIYdvcE3P7hz/w1RB8uCnhp5iWIcPMZQt/L9UgYrQ0FyyLbq9BkOl6HfmdVgnKUoJKB4tTzzNluySi8dLRKtQRGgs3sYzOfCUAI/QCfQoSZOTDWSvmMfK1dYkKGIhpI/y3tSmDHb2g3t811BFQAYiE0uKiBi96vYTYkASjuM37migk5ARN+rtvlXKUSyOBLdHMhlwlhdqgGj9wO6ywGX4Kzqe0FzKi2Up+5i5YorV3OJ5M3ct/knEAeUO+xRG6phYTOYaNdazqU3EPfPzd538t8LWPxN3/epGeNnx8egxjwBx9GOWUupvkY4c8TdJzv/peDHYGWfYwnOr1iBKarrNarobAe0O/s4uTr3nFW52TAwiDFdQ7tsQ57p/akiBuzLc2iKVxX1sVcUDHpPBg88aozh01TXpPu+NZIyOnQZEo+JdzS11j3EVDqB2TSVCs8IEVQKPDnE1tCoCMdj6l4pddg+ty1nAXVyyQIZP//5IBe6VaGlBysUfeKQ56NPXjY8x/81F+hc6rVqmYoWBfxtXe+vgAuf/gzf+2snwltv//6lwMoKX72/bPgNAQKFdaTr3OUuIzvCzNP/L02DTZqcazUq1HMo2beLBoEn3PgMDPHGVet/lxlumWIKvc7iVDrSChpFxoYG0SA2bRZO6VXyzTxlwnb+HqoI4OAXmHf9Erf2iKdgVcMnfQb9wPKiMN2uUB8bKd4zo21ud+1YB0QEASUY0xRs0i/v+p7vm6dTE2DIHkO2hZB5X2xrsysfDGM22A7Kmbq5uQGZPce15iaYll4f74/AZBor5CAxVQkI+8HjHV4zKoAJbuqx3g+v/GlPoZ/azfskR2uHYGWA1jx8qQH2/useke1yuGHud9ZnVXY8+/86IsBALPtTgp/dctWcrWYbaL8h90BIcRiVcyrZ5dymAgrIaJCp1LaexhR7M/h+0H86fXKTmc2DZjOi6Kvnf/mlUi7nE++5LLKsbboV2GDmLYPgWrTKGDiVFRF42bFgFS3zzoHn8oq6HD0JrErABBtQHhsR9wQZ7Kv3v0TG6+/diucLdN2Jut3ViPAEfoB6IfCbaF1IGzsCgk+iLBV193hZIEcFswMCt8HPr64UlSIO58TgOhReDKxbpwfR6qk84Qm2oPK1ePpu/xM+UKfIiCHAa31hUaKj8ULCb4ecS+gKfb3fZ8XJ32eSLVWRmpZMdMXMqDQrkoG21prwVoVzeJoV18NzinyLX3v8yLAV++icVZcKKNcLOl6XVvmdtH9es1r3775oTtH++rdPyEsWre9pGzKdi01wbjvu+Nbom/SYMx1TcHSEDBU7swqtxJr3rCzIhan72HRwrSNPPvFu6l0Mq4rS1RYNaZodxq3g493mHYUPUR2BFo2mESj9Nmvqk3TilwnhC2oULmDZJr8g5/6K9j5ykNYPbxCe6yTgmF0LI9+RQUM2yUxLs2iwXqnR0ihzTrvAVOY7dZCBrF6cAPSSj1NQuzH5zTmPBFp6jMAQp/WKyKrBkY9EFhnRaU/7O4VAxKfN9P9pRuBB1S/7uVvOV8K7Yw+yCRQ3jtHkxuDyJXSCKTBxnUN+p1VoXt4+v/2/528P19+y/8KAPimN/2sMCx8PB1Zw+cGIMAPAB55z9/C1X/5718wlqVZLuB8Xi0Pu2uEfkCzXFDiPsV86N/NvJPJAe04UkyHheprYhNx6HoY54Jh4OGcZCbm804BOAE4aQJiEKnZlWIVnMB02PXSx0EdR59HC3r5XAwU6ppHGvjrdjGY0t8TmJ5hfWonH1dAShYcAwQ4nEtsyzxgfWpHGCSfEu7x/poBcG2bn+k1ijxH+n45pP5I75lTAuGCXVSgK7NhoPt0gQG1tq/e/RNyHwdOMIg26dWcjDVA6abRkVvGWrgETnXJBAbYHAHG917qj63WsN4iqPuqAf36sdMj9hzI/azBOVC6s/UicfCHm5DS4wJkxL0gLbm0dgRaNphtXc5/wAMKysypeqDUCN0nVsE50k/wpAXQBKj92ayjiCGgPdYVWSJn2zP0O2vsPbqH2VWUQbade0oQNy/bpil61qk4UE4K1gUIddy1RXVlIE/AetDW0R4WQHTlSlpTrMVqtfIVUzudvPSaKWG3Qei5KF1e/envRzqLUE40WnQLIKXmbgp2iJiZrrhnHM7ebi3wxZ942Qi4/I833SnnfuCtP66uJ4HD5WL8DFADZKWsvz8fY3db6Puc0XXd07OznIubq+3mMrDzdbNJOnQFVohFmVHOFTUJy/PQ1gm5bLnqTCBBVvVKlyC6jHqV68aAAICwJzKRh3Ji5eeDqXsNhI2zOTKK3QmqVpVrW5XVNtBzavMzNqX/mGKBdEVkDW6AHJXiuja/ky3gEvhulnMMqz3pM2Zv5Dl35XNuUfY93y9uG+eCYlBa3++6/XV/XQi2oHaByrFDSOL3VGZBXWMIIYUhp4zBicEKKGsP8XH4njIbqq81+kDMU1Cu5PRTu/JqFxr0M+hyeYc6hFxAZdfSQqpr4EKAPccI0SM7dzsCLRtMHlKUWW61cDT6ICCG0qc3RXht6AesT+0g9AMeeOuPZ/dMCJJn4JEvPIBmQSBiltKyDyqyY371FhUunLdoUv4HDuWjGhq8AqEaLFYNwLZrYFVCLDufiZiWV9ZaZ6InHj4G+/eLzLLMLvhx4rliUqqAhkOe3NrlAn7dF8DEdW0xuNQDLNsomZqaLGsGQLNdsl0KUdUTBE8m//0Nr8A33/2LAID73viX5FqbRSc1pmRiSrWY6glXr2gDaNX9yHv+FoDpAf6gJm6L9YD5E65CnyasdjnHsW+6Fn49iNuITbsKgHwfs8bJwSvXBVbrgsEAKt2OALPsVqkFk0AVUppWy7Ww1jatHF9vy9sDGIXyamaL72Wxr7NSQoKSCZZaBgG4GCbDhC0AoyLnapDF7kkgR9xolsT3fW5HyM9Cs5ilhHFzGPuYvMczqY3UCYPFx7TIrlqPXgBIQAZvHPHiKnegBiu1gF27R2r281zs2te/U1ymBJ5mBILbBrtfe0S2C+seoR8wv+YqeV+77a3sPpuovg1kYKPvQQ24yH0NGJuriMcQsD51utgGyG4nzZRGH2BDyVKxa09cymmhwPfAWAt3mMnljqKHAByBlo0WPQlVbdtgOL2S3CPd9hZRmAmU6ARy9QAQfZCoDCBPBOtTp2Ec0aZ7p9biCuJVKVbrwtUzSwmpaBWRs9G6+YwSsc1nkixMFxaszc07aNkdv+iOV3W8Txo4uGaP3l/amcKGp0AFb6PL3et8LLIiUuUEONJHBILVRFj066qcSPT3U8BLT9QBg4CNNoFHrtw7u/o4/GqN33/9y2FYG9Q2ohFyoIHLtrnab01r6yy9lNSqKb4738J0mlXjpH7tclEMrjVI0RMBs1HWOZmcefJ2bYuTr3uHTEBhnV2IWhsEAG2KQBu1TwNV6xBTMkTbtIB1cE1iKYKHmc0RvYcJdbVnV+pJXPkcaOA0JdTV1x5tGGlc+DsA4kLibYOKPuHntH6v5TPFsAjb5Etwx6BZnov1qohqy32VBaLigkh9P2CF4H12kyrXZzGRb9AG6Ym4ZlbOF7BIfyqGy3YN2mNLDKd3sfu1R2iB0g/oT+1gdvVxdMe3Ri5A/ruuvC3vbynHIYCIXjGyTfGsC7BwZUZoIKd9sF2DZj4T8NlskYuSQWST0gYIC6x0dxZA7JpDBS1H0UNkR6Blg8lgpHzQTXqQB6RIAgVY9ADWLucYLE2GeiLhh354bE2itN01Fifm6La3RAPCgkc9oLER+5CzQ1Jl6b4o8gZUvu/Kv83HoWvLL7pPrgGdX0PvQ8cqKWx25wSlr+A2F/T4RL/qPqsHVgBlcTI16Y7OPwEEpkSYdF8WsjLliaNV92VxzVVYPZJXwd321miVxZoYndCuNuMsrRqrldw1r307Hn733zyn3D3/4013igiU3XsUJjwQ2/fI46M+0H58cbtNgKY6goTzuOhj+b4v7kftAiquHTpKp4pOsZYKMlqVTbab02eBCxH6ghUxTYc4rAsXoAaL+z5jFRunP9ehvxqcaBBQCMaryCN2edZ9WTA3CXzzczfsrEZgV7My5fvhgKaFSzoiPSbVYGlY7dEzzQLnqq1TfVQDr/Mx17awS+rPdnsbdnkc/uuPwliL2dXHMKzWxCZffUy0aIByIToHu1wUzxmQxxgAhauPf8u9UNtJP65LLYs8Cz4zY7ZtYBJwbRb0jvchyEIgOnIBNYuZLHrkmtFiqlTKkV1cu3hKrCvc3GyW3RpJ/8HpuZv5rFjZAjkyZX3qtEzWIQ02AGTQAih6hz9vl7PRSo7pUM2qhLTKpdwDeWAU33c1cYiobDlHuzUvVgntcp5DBScYEmmHmpiLlaEaPKW/FKBhwKKLGOqJpv6pJ39ZLXUl6DHWwVgn/mr+jN0MMsmpzzgag6+rWc5TSLWXa+qObxFNnf4+9k3X4thTrpX7zCvlSYDSdMXEPEpmplbRj7znb9H1dg1Ovffvjo61n1F/pAlqZxf9zqqot8T9yIO0S+wQP0v6PhlrCWhO6Bke/bm/A5uqKfP1hH6g3BQhu9o4ekbfZw109cSJpqUf/YyqSBbTdjCzOW2jrlf6Nt1T3a+8jTwH6jnSuXk2/fA++lmS825geGq2hj8TF1nqAxbF5mOW0U+2beAWW7DzrcJ1I2xJ9dzbpi2OqdvC7eQq1Nwn+nmtmV4BZun+HP9f3ozztRM//g/g5h3a7W24E9fCzJdSVZwrkHM+FV8x1AABEttR0stNbCQL9BkY8t+ua9EsZuU9Tv3IzKgGee1yIZ81Wwu4ri3GCHH7qnFOs8z6GTlMCyHCn+fPUfTQN7C5eQdnKHlbl4Rymq6sV27Dao2w7olSTKCAqUUAWD+2gw5ZY8H1VLjGBqD89ekzvT8AoB2vInkiM85KMcDCNeIsJVRjF4XLzIJuP7MzWhfCLArtp+ur5NWn92uZ5HSyLD1x1WBnagLgzwtNSEMJpIC06kwTl01Prfd7tCpvOvksNZbcD4pmN/1QrD55VaqHTtYr8Pl93+cU7SrpmN6+aL+eFHwJ/gDIcXRfHNS47d3xpUTauLZBSKycDMJJE2Wdw9APxC6tBwTv0bDIcDe7Y7RmI3oC2Sd+/B/gof/9rxeRQvr6BKDyKrebE0tiHeKQcrQ0XeH20c+5gJd0n+R+tSkcmL/Tzwhvi/z88DNhkbNW8+fsmjLWISQ9iDyPthR36raG9VBoPZwSbjM7IywJBnleNKAY3zufF0DMQLYt0HSwISCsV6UbQoE3DCxiHTOR0l5nYeZW3Hmmm8NiVeTSmWJcNrnVztWMtTCzOcxiCf/Qg1KqwKfyB8blhV5U7JGOJNJuYd1mzYLpnC76+ur3Ue6JV4CRoyNTO8LQF8BXH0ME5IrRqQtrmvN0956NMfA432Nc6XYEWjaYsQZu1qGeYHXxxHqAauYztNtbQoUaR7VNdMRRnS47ei90f/QBe488JhM1G61m28mVsbVjWlsPsiwe5cRVxbWogVsGjRS2WoOVGizpv6dWsKNV6ej/cVIrmmyq7dh1UBm7EOSaZIBLk2PIVLJmABg06lWURJK40n2236Aumojd02NQplZp+jrrFfTZmmsbzK4+ltPwq1wh7OrjtOm+74u6PTrb56aEYrpt17z27fiDn/orhR4jR5+xW8XBNF0GHny9DDj4nrS0jRQW5D5J+xlrEdP/pm0RvQYrCdiHIGBk1G6byzfk/ZyAH6PeJz0h0oSUwREDXw3SjHWI1udoEi1qnUgBYLs5wjpH9Ghw5RLjYro5PdfWIVoL27Twfi8/Nwxahh4x+KI9MsEmbZBt8rUJ4+gczGKJ2Pcwdp3vEarrc/aCsCzSH90cdus4TDdH3FsJ4J1fsw2/WkuIMued0WMWkEsdtMlNRNqTspwI9XEW5rLoGgBMmAYu7NKxKMcD1iQ2WwsBxXrs1e+XaToYjAME7PnGIJ+FHYEWsiPQssFs08LNUkKzkKn0ZmuBMOSVG32fI3IAygOweuhREaCtT+0UVYq128ev9jC/5qqi0CBHAvEKjieivUq3wNoKfpHYV2zmFuvHTqNNEQlAqW3ReoXox0JFBixa/CcCtCpx1VSxvFrfAuRBFsGLODN3tko+plbUm2+OQxxyDo5iMkyTYwSAtc+sUUcr2DD0RZVnEWpWLgO/WqNdLuDmHfrHKAJBhwBLX+k07U2bmR/uBx4MFWA0lnJJHKSy7s6/eiuG0ytZRbO7hgGbdRZNcm25lgBYs5hh9dCjBbPApiNu2MXp170UByy6Oa00WaDMro9iYtD3auQ+YQBT61pcAXSE/UjfmQbAsM7MDB+bj5/0LzF4BUwcsSX6XNYRo1FM2F5AhFHaGgBA0wrjosFG/TxmhqmR7cLQF2BXJuVuTqAttcfu7dL/DPLaDmg7OHlOvHweAZgh949mG03bFm2LfU9/J8Ez9wmsFdAY+x4GEBZqahF0rrb7az8Dd9U1MMttuuYFuXlmVx8rxkrXtnDHO6wf2xFmD0gLhRaygOIxqLv6mLx/muWWe6HeWwsCKCONUvVcyufB5ndUni1fjPuAWnhYCzeblZ+vj0KeD9uuOE3L3t4envOc58AYg0996lPFd/fddx9e8pKXYLlc4uTJk3jd616H9focEwA1LVGds7n4pN28A5oWtmnRbS/RLufy06Qsj/2p09h7+LGilksMAbsPPY71YynBlLiX6IHnELz+9EoigZgFaeYzOUfh564o1OgpfXu7pBwdkuI9HUdrEYBc7I731atv7Ttm7cOZmJY8YFcABAqwHNT0RDLkiBXTtjIJ2Sb5nbuU2bbJE4GIlZsubeckesV2c9J+bM2l7dr/T1T1PLu41N+2m9OKq8l6GvqdBkbrZMDWIC1v40b7nXrv38Vj/+zNk92w86/eCr9aY+/hx4Sh41B72zaFdoFXpAxem605uu2luhclC6Z1HyMBY7JrX/9OPPEN/xuaLRVqb3Ofyb1K4IBAihV2RN+T0b0VRkY/LxYm3Vc6ZifAJ2u5EhBJ97WYcBik1AwZT+Tc9+JmbHNb029mj0zdNn5Omla+L+9p6rsEiqR/QoCZL4WBMLMFDDMpDLKsE7eK6eb5mmcLGm+6OexiOe7Loj+raw6e+rLt6HzCfqVjN6Xu5nxs9evvhpkvYZbbsPMltTu5xKIPGE6T/mo4vSoYlGZOYeDza64CAHFtFZe3WBbZqwEU761+ZmtNUPGj2U9XPsNxWAubayyxVGaW3vWO5gB5PvgeNaTDMhtYy4thPuC8NS0XEKdeMrvimJa/8Tf+Bp785Cfj05/+dPG59x4vfvGLce211+LDH/4wHnroIbzyla9EjBHvete7zvo8xSrRe7imlYE4hoBm+yrMOCJgtYeubbF+bAd+ZYt08AQ8Ogy7NPm6+UxSTEcfsLj2BLEoDz9CTInWg3gPd3xLJpzu+BbWj50GhypzTY3FiauxeugU2nmHbnuJ0199eNJtA+Q6JrZ6gfN1V37d6qXctGqpt5HVLJ2UJo60qhHNwn6Miv5eayAAOZbhe1KtrqG1E4qJEZCYVlKsIQhK7xK8p0gV7oehz/SxtQSiZBXr6Fjc1uTewLCm8wqwZEYhDeShDFkFgMf+2ZulL7ldxln0O7uS/K1dzosMwrqOjM7dAUBE45qG5/vF59V/T61Ii3uatvc+hXorsJK1Kune1vsyi5L+LtxD2rRupWnpnvA2IxDo8jE5ioePXWlnTNsh9mv5TJ6ZSnMDS9E65GJU7wRrXtR9RtPCgJ9pCxNcZmlmc2AvuYjS8xDZRRN8CR74JPIdA/2W+qBRTBGzMX2P6H3R18wuGucyKLIOQK/cQeT6BVIpD+vw+L/4ezj2o2cnCmdb/fq7U591sIslTfgJPNtjV2eXc3rHRFeUnsnZk78Jw9e/huYJ1xYMrm0bYDe70d3xq4WdpLanZzq5bFgTxFY813xOlbRQ8gNZjlYL+f4WY4klkGltBjUMAIf1NIt4Ee3IPUR2RYGW97///bj33nvxy7/8y3j/+99ffHfvvffiM5/5DO6//348+clPBgC84x3vwB133IG77roL29vbZ3cyoVgtMJvISZFWU9EGYLWXowZ212i3FkV1ZOMoLb9xFOUzrHN+AY5a0cYU/LDay26ArpEwV375OB9Ld3yJ9anTaJfzQjzG59eF1wDkMOfVmIWqJ7URIEkrFD+Rwlrn5ZheFdoi3PWMxgN4IeJ0xQA9tQ9vX7iNrAM8RTOYGfncaVBziD4n87OpRhP3oxxTT876+vRKHyi2qd0LGrywm6aIspH9pkXKFMXW5igeZkhsCYDq/QQEb4rKUCLSWuOw+6vvlG1Kxs7L5DgCjrp/9rNzHfBtdgNq4/9FA6PapSdssQJIZEanPh6cQ9zzxX0WIIwMGBjURu+L9yCGADOo94XHFXX9Mek7DZRb0TrAKldrA8RQAkOdAqHoH/181n0HELCzDtGXGruD2Ol//VPErCVWRDRl1gq4NLP0nQLLlIK/zYkNt44DX/8aTNPCLY/ngASVSoGum85l+qr22cgdqRgXvRDb0AcGgHET70TIfVqIgm0ChMEj1izfkR2aXTGg5Q/+4A9w55134ld/9VextbU1+v4jH/kInvWsZwlgAYDbbrsNe3t7+PjHP45bb7118rh7e3vY28sv7qlTpwAApqVwVyQXA4JHHHrSUqSH2i2PAYHEswBFdrBOgEP7/GotrpphlybHZrmA7VosrtkWvUCznMP5IG4g46yAFjY37zBL3/U7K/SnTmNxzVVojh3DsW+ibeqEWDpnCzAUbgNuN5vOh6BfxULTwtEWrsyPQeBKaQdUFIkYr4blf59Fh7yq1nR3COK7zy4Zi1izNYqiB0Cr2gRQCvCZtAQ8ANm9FUzbwiYXFOfjAUhU6GwvxyZxbygAjJ4oilW/V7qaGqSxvsXZyYywtTWLGfYeeVzcOMZZSYhFmqISsLDrSP7WWpvUPzr6wqohwLbNeOWd2u5mM4Qh59Cg1akCTnwtA0b3Q/6emkj1Pa+0P7Jtumc8mWvmRgBMm7cFQP+rZ4aFSFGYstRf3L5uTszGmnVAPq+oRYTpk6sgP3e8Hf/W61jtYopDL5OvdgkVjE+wBEoUwKF+TeMPAxZrZRxivYpm/0zTZkA2rEvGio/rsi7srE3dS9O0yeXVSR9ye7gm2bBakwt8PQDJJRT6AaZNLirryL1kHcJjDwOAuNv5HpvZAi4EDI8/rrQt/G6q98lSBJtETjHYSPcjIGnhWupXy/2vI7YAeXbkeWy6/Ayn5wFNB+sPL0/LEdNCdkWAlhgj7rjjDrz61a/G8573PHzpS18abfPggw/iSU96UvHZiRMn0HUdHnzwwY3Hftvb3oa3vOUto89NNweaRvmDlasjDTZ2uQ0Ej3b5iLxInMCMV7d7jzwm351+8CEAwNa1V8uq2XaNCNZc16K76jjWjz5GabDXuXKvJKHyAd32Et3xJfbmHboTVwPWoj1xAnFvhf7xHUpulyKYAAgbY5yFWxDg87unRyt62zUYdvdGLiE+hgz0w7pYzUiUhSQH2z/6Rq9gZVBPdHoZ5qrcQmplX7uD9ECpV0kyaaV7mENpXRb8Nh3c8jhs18O4lGPHkp4CiuFhFwMf11gvK824XpXHxro4h7AvOuRaDbDcv0VfK2qbs4T2O7tosSjuhfbX68Rrciy+ZyLmHLsD87bUr1yZfPeef1S4JmyDEWMTvS+EpZoZ0PfKVABtBBoSEBGwwCBLT5CgyZ8jjYpzaPYiJJBS0/fDutyO7wlv13TA0Cddy5aci4EyvM+gg5/1dXILdnN6DmYLOg+zEMnNE1anZXIumJ0ESkzTEbAceoRdBfKUe4zBDLmaFIALLruTGJQ5R24TyZVTRnlxv51L9JC4oJqu0HjYxRIwFjH0CA9/FQDEnQ1QorfuxNUI6xXcYguxX8Ndcz313SoVoWw7xPWK8mQxqOPnZbGEG9YYTq9oEZP6x7ZNZn2S6NmkSCCJDmPXE19Ek7Q+jQJu6lnXuqMYAmkI9f1I25jZ4YGWcAFAy1GelvO0N7/5zZOAQdtv/dZv4b/8l/+CU6dO4Y1vfOO+2xozfoBijJOfs73xjW/ET/7kT8r/p06dwg033ED0Z9PISxATnWq6uQw8vPJrj2/JKr1YrTsrrMbsxPFUHr4R4RkAEUV2bUP6iKYV4dnS5Uq1dk4vb7+zi2ZrDnfVNWi2t0Woym2hBGOpRobKFuvmHYEs6xB3TpXukDrT5IRrSEI7rYPf25OoJdZ0mLYF+r6YTDIwaBWTMl5FA5BQVxn09X1t2ryCV5NZDncu9QkMRuQ7vcKXScsC8yRubFqYLq+ihQIe8mpZAyb63uZJg1es/H8NqtKf7EIwUOySsjqyh++FHCq5IP1qXRSSFJDj89+1MLoQjboMHDSI4MgaYcw04AJSdA1pN2INGni1rzUYmmXTwENFVcm18/PBk2vTjXUDwijkSYi358la32fdjzGEvEJWZhrk+zes5dzSLxrwpmMbzkujTYOzbk7XefoUTWyLJQyDidmc3lkGGavTMPMt2OQeCacfEwEtoEBd2+a/hzXMfEv6iFf91D8psqpfy3vE74G4oJipOkfXBgM3FsKbpqP33ymBMVJm5fWA5jiFOs+vuQr2qmtgUkg4s09arI5uTpF3PUWPcQ4gAWNNB2PX1B/9mM2N/Vqua3SvU6SW6JvS/TLzJTCsEVZqIacWNXpBIgJj/qw5yoh72HZJQctrX/tavOxlL9t3mxtvvBFvfetb8V//63/FbDYrvnve856HH/3RH8Uv/MIv4LrrrsNHP/rR4vuHH34Yfd+PGBhts9lsdFwAMLMt2C2lWl+vaKC2KQfC7o68FHa5DeBUwbAA5G7gKA8AmF99XDQqonK3DkZq8ngYULQArKUy7qdXxcTULAmw2OMniAId+uyumC2ktpDOgGuspXDEFL0QmhYufFXCWLGm7W3XoAkzEc4BKCIMGFSZFPIdfci0qnUwM0dsRBocY/C0+mo6xL2kJ9kk7E0DPQCa9Hkgmy9hl9sIuzujlWIR4VH8XaWWV6t6PSgZzssh/3fC6GQq3pUTkjqfhBQzqGKzLgMv3V7NLOmBk5kqH0aiyMf/xd/LmpN0Ps52y5okZocAjBgcaSuSlqfvYWxZdgHITMzWj+SFQexzVIUOnQUSQLVJ1MpgNDD71Eq/1CLSEQDQ5+dnia8BKMGBTlhny+eItCm2BEpqO1N9lifMDD6lTZpN4v9T1JixFnaxJLax7zO7ARSRL6ZpC/AqQCcBFtvNSdvEk+zxE8TQaZdNAjZ8PHl2kNiObo6QvKCFyHbos2Cc+8BO5Ks5i8iX3Xv+UXEt4nZhJqPpAGOBkMpePOmp2HrsEYQ1sdwyjgxr2K3jwqyExx8R0bXp5rDLBWLqq7A6TSxMCJmlXCzRzlKem9UOdE4mLZQXdoXvDUdkpeeU3GYpwmo2B1oa18pnwJfjiCPgJ89G8BhDo4tnPl4A99BR7aHzs5MnT+LkyZNn3O5nfuZn8Na35nwWDzzwAG677Tb80i/9Ep7//OcDAG655Rbcdddd+MpXvoLrr78eAIlzZ7MZbr755rNuGyHwpJ1JSZ5QCTFN2xFYmC9hg4exK4lMAYD1o49JUiW2IVVmnl19nAauYV1kwDTOwTAjcvoUWj1JzojlEbfE7g59trVNk1I3B+ZbsMd7xPWKxKaJvnUnrpVwSjPfIrdWCJIMK6xzam0tzLTpXGG9ksgK/syw2DG1T3zsKeQR/RpmSwmg9UTOoCTR6sVqGsiunQTgNDAYaR6Cz4CEv1NRKDJo1xMet1nfeOUDZ4pfVvO8TRJvxjAxuCUaPzJToM83+rvMBTIlpGW3IGtPht09SkPezUWQzZaZpcyq6AFcJtWaJQAKsCRuIZ4oZgq8y4p+//wUoxWr/lsDTN5eMyYhwHSVdkX6TOlRVH4X0VMwIKmeg6n2Sf6Uvax/Mt2YzZPrSe2WENlQgYDEuhlLmWFtOE7t3FulhU0CM4l9FHDf9zSJpqggaguHf6d+Sn9HJRwmRiZHMBXMn+7nTc/f2aYi0JbGP/5t2hmisTmCarGEu+Y6dI8+VlTDlmed2WrrBLCYxZLGo9OP0bjaETuG9UrcX5xOQBYxSVclyfoSkJEFAruJud+KPDY2u4mCyy4mft53d6pFkR0D5/XZC5nP1Y40LWRXhKblqU99avH/sWPHAABPf/rT8ZSnPAUA8KIXvQg33XQTXvGKV+Dtb387vv71r+MNb3gD7rzzzrOPHALyKhK0srEgBiCuV2lyTg8/u1a2tmHmy7TKIfFeGzx2v/awMDDNco5wyssK2bQtDYAVVS5uKGuBYwnZp+0oX0Pyzy6PE4hZLPMKbbadhMMBgUFN08IePyErSHu8SxPDnDQdwxr+oQcxnN7NTWDgwiyOJWGsppUFbNXuEH75GWCxj18PqECepNLfmtGQvgRGbhQ5p17J6vM3SWtg1YAFCMiUfZwrgQgwdmko4GEkRHKsDdDiR056FtPnWggpkynrZTjEtgdsg5EQloW37Cak85eCZop2yq4guo4qsmcDWCjaBGDvN96bBKkVw6HcYEWeEf0/gFqzIv1Y9ancC77n7DaR63bCdo2SFVbsCYGViZwZ9TVrPQJPTMltJOf0Jchh14vkcknbyqTJ5xeWDrDHT8j9iVwzLC2AjHMSDs2sLblz+pIdC0EALYcRh/WKPk/6l8BgX/QtKaquaStBcGpLDdatxerenwOCx/z2v4z9TJginuyty/WkrEN0HUwYSAe0u0O/1yvS+aXIt+gTMzxfJvdODzvP/WDT52CNGDN1hY6ky2Btaxu2ihQMzGbxM8/PrnomNGuVwbXNi9Bunt2NvJ2KTANn6Q1h9Lwc2cW3KwK0HMScc3jf+96H17zmNXjBC16AxWKBl7/85bj77rvP7YB6oHQOaAlhB2tJcJcGDn4JeNUWdk4RyJlvwTQtFsgJ3oyzVC3UOTTHjgkIoQKK5AaC9yS4SwOhXZAmRgZJSaplScTGLyBPlt08r+p2OBKqg+kWRN2ya+r41eOkUw9/lRgalYFTBt20wuT2ApA25pWvF+qVAVFhnLQreOpDFjXW26QVFXZOUb82bQKHmb4t75USNjqXKHc14CiwUnyPCrggT1zFpMoMkluQ+6sBzGyR3Cdl6G9UuohRdl/FqsgzpgZN6ufxINge34JNFcPF/RhI3B1Fn+LkOKNQ73S+YgUevDyXGiSVqfCz0JrBoPSTdolpUJS2N7NFSd2rvoV1Fa2fJlybjyHPpOrfgrHRpib22JfaFtKmdcmdk9sxArx8D60FgmoD52Hh53K5jbi3S4uYdXKHav0Jv08SacbtIC1F3Fvl+5DCfk3b0efrDGbqyTD2fVow1SJolfLfUjZmtNMMCoVMjxcAZwIs0i8auMzmlGwxJa+LADDsIfZrYkr6Ncx8ie5J19O70M0RHiFxrrBDo2O1WceSgENc536JifE2Nid5FKaWTWlQSJOWnmE1Tuq/BfRpq1k0p+6pYr9iUP1/CHbEtJBdkaDlxhtvRJzwzT31qU/FPffcc2FOEkIaABOr0M0BtwXDoa9AnsyAPOgp9sEeJ6FnPH0Kw6lHAaSw5eu/CWZrG/H0KRr491YiagOSQC01Iw5rWYGYZlkCDSAnP2JavJ0hUpgH7PEGiAHRNrQC42tLNDj7403TAieeSOdb7RRsCIMWFmlyaGJcEXXqrrqGBtgNoZWZ8k96BwYkQ08D2c4pIJQ0vEmJqkJyXwGgiC0giyUrmluYLyBHecj15omer7/4DsjMB/+v+kpvO8lWMAjwvmQjghXGQrupRmaTO6qabE7/8t1p3w5uDineyP08qsWTQFsBFvX9SG0UETlQuKT2fuO9OcKGBaisV9CshQLrRR9MgUndLmSQyBoMCQ8XNowntFAct8i9w/eSwVnTptV1zm4r7pNUu4oS+mV9jvRHn+8XMxs6XF/a1XF27KQFSYsSWmzQPqZpYefEhHJEGbktS+CYwX1fhAkbiQoqI+hiSngofcLXm4zvqQCIyuVZsIvMBqbaVaZ+XzcZ38PUv5b7o5sjplIecb0i8LS3K8+gZp3s9jUEaPZWtG/bQdyW/H70fR5LQePfSPgcvOxn2g7h9KlxSgSttdPPcEhi/wKQ0jgYPS2mghKACyipxwzrYNDCNIfnHhpChDtP0DEcgZZvcJNBl6sVj1fmeTWa0HdC+sRuzGGtQ2xaNGrgtyeeCLt1HB4ATp9CbFrY2TZ99jCvRrpikpQia/JduQqNroPRpY6NQWyVwNh72SYaS6I5AMZmd5c9fjWw3CaB4N4q+YdPyYRjl8dhj18Nu7WN8PgjCDun4K79JsSdU9Jufrl1tV5elZuUitxYB8xpBYzdndx/im4XJib1cREiyzQ6r9T2SW5GQlE12AMZwChXA1CLNe1YYicJy2y+D8AoGqEQ5fL5wNESuX1FbhG+lrbF6X/9U7kNHIkmkS8q+6dmJfh6FPMFTLiyVJtimGBZ+HlLLsYiA6jqG47mKqKn+Fq1GwKZWpdtFNioxbp874F0P3TBPK3rQAYV5BZhFi65cNSkFvfSZNqvJT273I+UJE3AhGo3/8/CeHb1xb3klmlaCaGNwcPOlxQFtF7RJGktjDouCZmTSHzoU4KydH+7OUy1QMjMYcoPVYEZ1K4JxSpE1nuo51gS4TEwxcFNxqPU7/Lc2iaD9tROs1hKCgNTMcUChqt0BLRRxcoNfY4MUtFc0p/8HKXnNJx+rNDHGPVcomkJLLW5VEAs2pPOqwCtaHbSfeJoQu22M+70WfTi+dkR00J2BFrOZFrb0u/RwzrfkpdIGAgVRSADGrtS0qoksrArvXTu+NUIsznsccXoJBFuFqB28tukzLxZ9NkK+ABAYET+ifK/iQEwBjAOEfXk3ggLYoGcVGl3B35Yw8wWsMkfb4+fyO3q5jA+vfTLbeDhr47Fl8OaBq22pURk3GcAhRjuPFZQxLo2T0yJ5XjVaOZbxL4AQNvmvC7BFxPbiOmRQSi7UYTG1//X+0wxIvL9NEBC6j9T/S3MSL2PWhFKin/rAOuFWci6oawjkkq06dkUhqjtStCgNAj1NS7/wt8p/t/7jfdSf8xVvSJ1b4SJEsCAzOgUuqTE+jErolgQHYkEaJeWmkity9FjykVUAAlmJSaseF9c7gcz38qgnyc+fo47evakOrMGsvzu9plJjMySzLdyOL++r8k1yNqOUb6htiXx6GyesucGmG4BuwSCtaTpSNuG3XWeKJs2a2pWO0BYAWAx7mYWT86r74H+7iAmgD8LgE3TFmNMYFcOA0/rEHZOEYBIIduGnyfdJ/r+MWPKoEqNhWyR+wdIbqgtGmdYsLtYKjDS5nvAzw0/f/qcaEk4HUJmtawVwJKz/yo9lHUwi3Gi0yO7uHYEWjaZFvx185yDAJAXwfDkqWhEHkAMsyNIL1liLyQXiHPAbCGiWYCo0Obab0KsXy7nhKVgkBL7PVphdKrEAIOWGIrPIgCwG8BYIAYYPwiwMdYhNnMYvkbfE9CYLWCbDu741Sh89emFbk5eB9gmazxEL3OimIxF1JYmN6sSdNHgG8gFlgYb/9CDowyVXPWWM1jGpFMoBuERhTx2Vwhdz/dYg5laM8Ft1poKnkDS91SnyGV9QQiIyBNmDPm69XFFu6IZM+sAG3JoMTMfgKy4ddSJHAtJ36BXrXKetD84W7Ib6Rr2fuO9EnJc+OhtBpKRE8v1JXMi+YusqpgrrqQqGkoDSKWDKjLH7uOukHtULxKAQuuVJ7SeAGDSTEhE3Wyecgqxiyy5rJi14TaB3mcz2yIAEkJmahJw4WeD3SXyDqrroUgvX97z1GdIwv5oLEwzg5kFiVYsVvWdE2CK4GHWDkhtycyTyv9Tu5lqsw7zF70Kex/8Z5u3Sdb/1q9J/xObl4THLi2arAV69VAql5r0E8qxUY4HjAEM/9a6MA0kqyzA7BZzx6+GRx5fYtIGFiBUieXzopCeJ6sAHmmP1mDhsxTvlHaxez6D/IttR8nlyI5AyyaztkT3zQzRNTB+oJU/AJ11kx9iN5sTFSrHSSuF3R2hJiVBnbElvc6rZbVvHQERkwvINEH2KxgWNk6ol0CK/AYA29BxwgATQ3IXGdlGEtVtHafBkwHTsKbBve1gj1+N2C4QXAO7twO7dRz22NU0MC1PILYz2L0dhEe+BtikKZhvwS63YWZb0jZz+lH4xx5J/7IbJQtlWagobgTOeKkGl5ByPkh/cZunQIiaUIVlkUFMDW5qsub/c+r4KjJG3EY8GJfszmg1mUSNErKrafHq/2JAZwaGt1WZaOuqxFOAjTUtWy/9G6gtazbUpM19xLontMX54rAm/RCvauv+1toUbQqwyEccsbEhUmy6fgxppSKzHmwsjE/PLJoOsV2AheXMTGmAwwuD6D2BQp6geaHALssZR8El3Utw5T0ylhYSMRCoYGalnpClrSlBXCh9iqbanipb82TZwvR9ZiDWq5wIsWkTQFXZYNP7TJmsc5/vffCfYfa9/8u4v5UVgEW3Sxqa+UO7PE6BCkNPbmQVAUiaHwJYMXjJJySMWmU6V070np4zDm12LS2sGDQBtBDrsrupqPbNbHlQ9z24gtWRPEG8cLMO2MtuYH7+JaFlOnc8IFF1IczHeN55Vo7ytHyjm7goAqJrZFURbUMuF14hpwfYpN/Wuuy+AAgALLdJ71KJ14zJEwOdU6UK10Aj+OKFiuhgjM2ARbMsvPox6kcb78cCXTfA9Lm9knRrsQQ4QobdQgDQzBBmS8A2cj57/GrEGYWix3ZOn8dAoYxNC//oQ3BXXQM0M0TO6eAHmMVx2NRXTCmLVqFpYY9dTe1dq1wa1iK2xDBJ/R5OcZ4mHHf8agCAf/ShfN2F9kLT5oo5qFb6WmxagBHl4mB3TQFsdKKqLoOpgq7nbRXg4POF3XWxsgaQU5QDOb8EAE6QVoIurWvJQGDrh96AkdkylH6kiYGarDhNf5rQjQsizow9xu45YMSa5eipGlRWOUZG7bRSe0f+10yDvv5unt8DICeqU/dBmJs+a1vA9cUASBRJGHLfz8jNFPh73TZ9ncZS/qZ0fZJALaUgkKKXSJPyntJG1GyVhDQr9nexLCZ2IAEVzmWk3DllDaycdO5MgGX45L8b9T+QJ/HoOlnIaRezf+yRBAS8uIukj2oXlYq8Y1BtnMvh2UHlXLGOxg/b0HNg0lgcBlqE9XuQ7LxNB9tZhJ3H5H+kBJy1hkqE6TaHbkvtOcWwR9vAeBoPOdgB9hzrNx3ZOdsRaNlg5sR1MIsZsLeTtAapCJ1tgDYN2F4xHQoY6KJoYGZkfgxmfkxAiOGonrSvASRrLFybGRUGLTUAqcGIdgk5V7Qpui6BrJFCNF9T0wExCggxHB7NYtOGgEhsZ4Drsi8bQHQtAaBuS85hhjVd+2IbsWlhdncQuyUdPwRxV8W90zI4k4uDWJzw2CM0CXEbOaOu9YmeZlfWOonuEnjZWwFbx7M247FH1CCVJ7siwkJN0jwpFmGNQlcn948OPeXJu1qJsjBU5/oRtyBP8EDWGrAGg1eKAuDK0GKaqDKzVzB9PNkBWW8Scs4YBhyrX3835j/w4wCAvf/4L4j9UhNukc5fi3EBFEnlqlVywQIpwXJhesKw5TYmtbFw4YHFxPneARmkslZhZKZaXPh1DpltOtjlcaAhoXpc7+boN+lTW2hi8sJjJhMpg4Eiv0sYMuAwGUzqRHiRRcGcpdU5YLEtz7rtVgiPPSJtEA0WT6DG0nvgWhj0RQ0vATXcD/qZ4PsykY9mo1U6JCk/4DrEht77Motvl6NxBsUGhXw/63tZ5BJKYM7MKhCegF7+IO3LgMUYegcSKIRraayxBB5hGwX6EmumI4wAGav5eGB2XY2tEYAxQ27bFDN4kexIiEt2BFo2WJhvIywo+ge+zyAiTcrRNTTJA5ki5QHVLIBmnlfd+vsQBOzId4aYE7tYEmBJgylizJMAlBsonXfkFjKWBiReBajPo6miYdRLL9s0La2arEU0BqYZAKQBKuV5ie0WtTl4eZljm9T4MkkkvYxry4EJyIOqH2D2HoffOSXlBeLeLg0s7QxGRMsDDTgptDsOfXFtsZmXq2+pOdQAw56I73SouGk7EkVXxqtSFlBLIjC96tcAqHJ/yGBdU95KO6FDsYWZYKDTU9gss3G6fpJkWtXlDjjzKwMX1tTIhJjBEUdHrH793YB1lFQsXWueWHIoNe3T5Wvle5jofZp4+0oDo1bStU5B9a/8XbNNfAx9U/iYah/dpwAkJT6QAFegd5YLnFLkSpBnwW4/gd4xWfXvJhfELrEISXg7SsvfcCboIVca53uatCl8X5jR0IChqEydfnPJiEIDFBrJWQKAnv2UysAkBjNdbD4ea+MUMyP9J/qvrDXpnv+DOKNVLjTtduN2RBb5NzN631RkH+dRqYXUI1dm2l7aq98TM0Ps9xQDZ2nRCLVYdLo/8yHjaofeZdclJjxklhmrcuFnmyLaUjPYsrD05LaO1mWG6RDtCLSQHYGWDRZtA7gWYXaMHlbtqgEyQJhgPGosIdskHYmAHQYYyAMhAQabJv8AQL+gRg1KFggEHsDfcbtTOzIrY9LKMw2iMQ1q9fXoNqsJK7qOjqvCG6VNel9jiNUBENvyeGZ5glZmQNbRtAu4E0+EuJlYn+BULho+9mxJ/eLWtC2LII1J7WoIJMUI+OQqClzPZFtWX9I/HJIpt02JbK0D+j4LS1M/iBUTQSj1B9bn5FaVVqWYmJJrhUW7EpnDE8t8mXMAAaVraWI1rSn0AsRJu1ye6JWY1cy3cmK2lDyrqDc0VZ9G3CYeXKFY+nBKo6AmrSJk2TrROrDmoo7mGmko9D3QfVEzXesV0ITsXkhZhw1PYgXDk6Or+DnRbl9hTzh8fiS2pf4SLRtHnrSZ7RKXoIpq0W6qoFb0kRkaFjlz7iUoFwVoUuY8MwIwiizPClAz09ZRm9e/+X+ge8EPT/dtsuY7XgQA8J/5j0USvXTR9OwHcmPG2MDYPIlzIcWCBZtg1wAUGW3pxJ2ww9FYIJRhxcKuWCfjlOn38rm0S6ddFIwzj6GmmxNwjTGNWyJeUydSbB2YgQnqeE3e78gOzY56fD/jyblRicoYgCT3Dv/PvlX4dQYpPODpbQDENh+rABlNkxG9Xq2mv6OxpWtmWMEwAGLwklxOxQDIv3kVGyDMiz4/T3YMUGKncrrEIAyQQQmUaP+YgQ5fj7K44JLxA2JiT+K8Q/Rraqv3MDOQwC6S7599x9lFlsXCsC5dQxA6V7Q0fD3tDO7EExGZ9eKB0fsibBHBS74YYRUWy+yuS/eAQ1Whkg7mhIBlHhMq6Ha6AEMliCEtTC48p1aMQJEXg1bSnfzNKdDLkgO2OC63WfJN8L3V4tfldhk6zJPeBqYEwefU6qpf8nNaTlC1ZqWIytFaIR31olxtLNrU/+d9xteuLXpPBQi5z5qkWWlmiI4AgQkDWHhesJwxlu+G6+hYIeQFh75GBmF8//QELG4EZoJ44m4yWNfvSgj0vCvXBU/QPMHCqEgtKJ0Wu5u4D9JnGZAhR/OdhVvDzLbytfL1GJvdyTLxdzBzwCq9VXj0IbWvhWYd+T5JP9kcVWf6XfpM8uss6JiNYkNcQ0yrTwsZLcwNQ8qV44rzirvHNlmnyNdDNyiP1/ybv1fuOQQPM6zALqXDsCOmhewItGwy7cdMbg7jB6JDefAAlA7ETKByC6NfBvW5mAxG6mUbesp70CwTEFEvEr+Y7GIyhgbZtCqJxqaBN+QBRV+WsTBGMyx8HRAQxSJh+d5YAA5wzIgYaS8DpGgJUMmh+j1pWx4IzGhQMAmEGAZ3yRcttLkeNDj3TDMngMSgrxr4Y9PC9HtJq9OWwIzPNT+Wad9hlVeSwgJYKvwIZL0Dr5Ctk4RyuTaTWuk3reTUwSqvEsvstVlEKplY1QQoBfIkQy3kfJI5tbbgi1W2ru0joclNmjg5WSG7NNXkIUnvCnDC+1f5UUKqJ6MmtSIZF+uAtBB5P9PHQQVUKjcFpRsYA5baFSkCTsVgmGFV1r1qZ6WwtGZQeaLSLhmg1Fro69vk/gg+9QvEbQFAUhAYv6Z32yYBN0DuiHYOjvYDd4makKcSLBbsBYNaADGs0H3Py8Z9P2Hh9z9GYMT3ZZV0AOzazudwiGYOk6ITdUSUJJnbSdlrdS0ffq9SO+N6ReeaL2G65BprZggtiavN6rF8TvXuS3BDWhRhPidg4jrqO+m/vBiKaREobjet85NFkknA0dIC1liYvccJtNS0+kU0HwP8eWpofDy//S8HOwItBzGXmAeABKYJoADpBYnI4KCmjjWS1wBAwI8FYhqFeFLVL5AaPKOa7K0MnjRoFWHLrkHkXCxIx9EiVKQXMNAgln3jTR7YFeCJriknSd0e/s1MEEBApHI/CaWbrHarRWaYlBlrCSRqq+nlqUFD+6MVG8ZuI2HJ1KrROCV61WwAAwEVuTHljimywnKSt9liJNqdYlzKCYW+E52GzRE6ugLwlGaG/lbaAOkzS1Fg3HYAU0LZycleHxPIjJB1FLbNeUb0gSpxLZeQ4H7MtWHWSdfCERxeEtptNOtyOPOU0Fe3W/0t76F6TsHFTeU5UAsRoATbU89ZIRCeBitFJud6XwdZtBjfA2HIEXTWqdV/lLGB2B7W57SlTmaq37QGaJNoeR8jNzkD8ok+qJ9D5xD1YkW3D8h5UryVkhMSpVMBQq0zic1c3L+80AFQiGRlkZTaHdtZsTiaBCc8Vg1D8Xnx3KQxVT7X49aRe+jQ7ajHz2TWJR+4ywMvkFmFfiUvkaBzZGq5CEtmgShAyH9YF4ABia4uVg7qRaQPA+rJHo3yx6oBduSnTSLbMooGwgiNAAKbsaAKcSEDJABwDboT12H9h/+jYo8a0rRw2POwBjxfU5sy9CpgwUI59mGz/z+tjjJN70p3WqJ5i3Zyf8/UignIlHAMRDHz4MY+8TmvllP4NdTKPjEMOowU1haRElLtezYnOj2522TS1seSfnKZpagnOw43T22JeysVZRFKHckEuKDjW9QTuNQA4gyf2qVQT3q1SyBpWMBsEohFIS0HiXK59g5lwVXs1NADnEuEAQsXwtMRWtV1mLr9KRMrAMrZE7yK3KkYD3a7ARnUszlH+VT0pJsYSyQxOQOoqFyy8tyxPsW1MDYUAKaodK370Lry8xoIaTaKJ8s0JnA0H7uBy7pPVq610GFp12SVguEg5v/7JxLYr58rfgdz1m0A4t6ObQO79zjEzQtIxJFN+W5iv06FFBeUAsF1ebxI40FoWhL+szvYNjDDXgJRLrcjMarSzpjAU5dzNUWXUkSEAQY96evSWENue6ohJFoZPXayy521jcliM0ecTsx8UewouRzZEWjZZOyKARJlmz7nxGw8ALGCnoEG2GfKK6ySLSmQP58rkHvJAHlSBbKaPYQiykd0J8aKW4WT3418tGrwI1bI5u24nQmwEEUd8n7Rj49nMfqsO/kUrB/9w4oRMqnviFYugBe7hPS5kFd1sZkn8eOgVohpItAghvdrFzSYIQ86oZlJuCt9kTVI0XWw/WkCYEzRWwvT75FAr8gjMcuuD22uJWacV3ya5k6gLA6rAqSMwqeBcoJulTiTE/AlgOJ3d6hcQVBZfXW0DlABlPy5MDYpmZZka54S2U4BF26n+q4sH0DH5Uq91D9ppTqsKVQ4BBRVulVdmZgATp1Qreifpi3zdSi9jAAu6yodUuqrNkfjsdFz4mHskJ/HMBBLwOA39Nntx/oXXVE4CbvL1b4Fwt74OmzO4huTeNv4dZ6s2dj9pphWEwZgXUWqpARrxpVASMpG1OcHRpqhM1mRJkGBLw1UinBgZlpjoIzVrgHmxzP48p40KLaBmdP4FlxH7mwNBrplXlS0M5hhTRqXLrmYupw6Qq4xBhi/K+95HiPUIs46wFuKijTk6mEdnIAV22RWhTqWXFOuhe1Lpiq2s4OHjl8A8yHCHmlajkDLRtOUoF5laYtxlE8lNgRGyHe6zgMg+1D5fwBo5rSdA4lTWZuiXRq2AWwgP3gM2VVjabUR9YtWAwxpp3I11ddYMTeF6QFqw+91Kjc/OhYzHsHD2AbRUai3UeHj9fbMpIhgGQCr9U1QAmdmpfR5mhkNbDEAMYkVXSPuLxmUEqMTsEWTgWsLtxtPcGb3FK32ugWBGajq0sEDoDwZnGeFGRtOegcg5+thka7SYGhXTBEGysdPmiVmbsLpU8WEU9RUUZE0HIEj9V8AKTyo2aKNrhUgr9i1kJYBmUkCbq5ebR3lwUigoogESdeiC0rqCKOcfbdymyXBLx2PWBudM6VI388mjM46iXBRgqwwpGdZrdA58gyg/jYWtQaMGL/d1PZQHFOeqQBiW30PWqNUfavZNah7FzxMV7okjGvH70XuvPxZYh8KkM2MqGRaVoxPVZ+r/61fQ/udf2bcj8oKdwpQCl25PaFM9yBMFL+n3E9+DUlMOBiE2bGyL41igDUz7Dr6rd5zuAZmnQEKABjT0/10nPSuG7u1AWG+6fs2t3GexhStx0nt8LZF7yPm1hFQjIHApbFAPLyCiUMAzHlXeb5AjbmEdgRaNpg80BMuEwIkGYDAGClEKOBEi/Y0UGFjn2nUk7ZiOqwTWhKGcgxEnwRmFpndYfoytVWAUTqmHnQKylMGvgx2WIRYuLNqsMOTe8WS5I5Ln0eTs1a6TsRwWJ+miaed5cAHY4gtCXnVW+SVSWBNR3FpLY5cs1DMHFGlQZ5ayYGOHZqZpFGXFRkzPN0ytWuL+mhtheUxYaCcFDHkgdy1MP1uagcxCVJ5O6V1lwldVenOTIEVNiTueSomCVDVYNvAbm3TtXJUlSpeSF2Ra9VwfSukmk9FIrZNpieQaqVeuCL051UyOWoTl4FI4KybQ4rQaa2LSn4nx9TsCesdQCLoqCO2sB4xLpKbx7rSnRE8Yr9H0UPGIqLNz37wdB/TNWvmrHiu+XrrPgtDwTroyuab+leAX61LqhcWPElr0+8dt9FixJyIG7M+P4PI4PcFLP6/f4L2n+iLUZuKoIRqAcTvZ6VnY/ZiZPzccbQb50GJKnIxDGN9EED3os2ZximXFD/HemxIbuJuQYyOAKS+0L3o9gaVF0tYUx43N7nUj+yi2RFo2WT8APP/TPmzzgTIg6xiGaJ1QLSi26hfVvqthH2Gj+2Ado6Y3BR0/IFYigo4FKwNH9cYAAoYMRCBGrw2MTFyjMQY6MGqjs7h405QxEWbYgTA+9D1BkcTh12dShPMoOj/jtikwg1WgcZiIim/M2HI7jzlnhPAwturfkGKlBI9TxioDoy3CAyQrEM0SdDHK7EYYPxMorxiCp80vnqd+HmwVlKIF6nB02q5mHhTJt+wu0Psw3pF92+xlOKYcb0L9DtF8TcBK1o/oVO5H9AlUDRfJdsaDc7CviDfQ3YX6dBfbiPnYwHKe8PGbFMdCm1tAVgAZCZFWeRQYV4MaLYlaXEKtwFHkvC5rKUipKxt0Mfd5DJjDQa/H8Oaks41apsp08wFMIq02ch8QrEfZ2JJmXXhf4XcJGC5L9NibA4jVizk6PhaI6SyXBfgS/dxGh9GgKV6HqJiMGVcNVaiF/k+Rzej9zppA/XYLOkXQiA3UDMrk3qmZyFaB8NaJl+54dM1OmuAEBGMg20XWdAPFDlhLrYduYfIjkDLGWwygZoS2co26kWNxtBEqIS5+hjZHZG/k3wrGsHrwaKiTyUMWBdGRAI/QF4BGUdsTgw5/HpioKNqz8ptM7XdhgFSMy91fpic2C670bK2RPmPeRLhdluHIJqiflRQLig3DB9Xzp2ivai963Gf2ly7BMbkQTQknzsDmHpy8OmaEgVtzGliM4yB0S4LX+WxYZEuJwnj72KkHCBhkDBXAGDhrzAq6xXMfIkwW8LuPprdTbxaX/WqFlGqccOTfwrXNrra7ZR2pPrfNEqvwayEivCQWjoq98tIc8IuG7Sw2rUmK352X2SdT5HATISW6rkTEFrpjBKjwu3Q4d6FaQDO13yQiJoKBIyOqcBiTJmSp9xE2rXDxzUV+JgsgAqULAu3aVN79PcaHKtr9Z/5j3A3vXDDRWG86IJamMQAd+OfoOP8358u26TZ2IqZpf3bcpwo8gKVC5NoG6DLxTB10spC18fatJSJOyrXe7FIUO03ySUYtZswCZ15AUT3h8bmPkTEGNHYDg3CaEy62HYEWsiOQMsmSxMn/T0eHHQ+lgBDc7MW+pmUD2ViMArGUbXNGMHPUGsNrPa1T+RX0egfxuVtGNxo+rhwooNID0VnFuwNT97JVcWiQ7kOlPuWHWGzO6dgRTKYisYicIPaBYEjm7UFkuHTNjDr0xnQ8ABoLeCdgBHTr4iV4gErDCKAjq6RiAOOGBpR7gpIFZokZqv4mmt3laU+z+HuipVKuR+QEpcxpW38IFEHRd4YPsZAFXqZvjZ+LYnQIofkyj2iMgZSpZgT3qUKzTI4hz3qpyatrJEFpdq1U5gGLNZWuXpsdoPpCXroRyG3Eq3DE2Qq5ijaiwog6KypuZouMRwFkNb7aHDEls5HYMvlbLIq8Z2xgUCmOxilX+YkSe+L0joAahwQkavN/48POPpdM5abAEttU0znqFQHW9KAUdQOsVb7iXHdjc+B/9KnStA+cS3+/t+Gu+HZE40L5fBTL2S0S7Dpsj7NqRxRsuiz5MZVx+FzAJACh7FRrC3fA9tIXisT6D3kiE3SFKJYOPI5omvRwyJEgHvJs8c5AkOIsM7B2s0A88gunh31+AbjJGucwt7bRC9XIIRfz1HFb7XikMkxfRYSWOl9lCyHXiWYk+gk69IEazKIUtENo/wRfD71QwdML7sCI/kY6jhMrXKbFTOkQY5mNYo+q8+bzs3bhhgxwMI3c3jbwjfzoj3c17midgIoIUUjNHP6vulKEMdiuqZLIMVIdmKtO5B7ELyEVu93LXmS1n1mhB2SZ8RSTojYLVSq8KRJ6rYosovbmNobXYvoWoR2C3F+HGF+nABNM0ecHUNYXIV47Akwi+M04TPISWyEDl22x6/O0UYxZFq9NnZVncmYEUjHq110MSWUGzE2WpOSCuuJu0ZVb6bMpspVxAUweVvO5MtgMV2vceQCM4vjwGxJlXjbmaorlX9qUEbHHCiLdL+XdS968m9amBSRpWs6IfhpN6V6dnkfrt48ybJMHGMq+qawiUVPzf7qd47f3Qz4M4PAOijKDLzZrTE88LlUDHEMbIo2ek8sS52SYZOldy6yxss1GcBzJF9aGOR3yCGYFHCgxxceS2EQuiW9L/Pj9KO0b5H7PXjSyLA7t9tCaOfwIcpiM3IkE19eiFh7+mGGwlkDYwx8jHTsQwQtMlec58/FsC996Ut41atehW/+5m/GYrHA05/+dLzpTW/Cel3m3rrvvvvwkpe8BMvlEidPnsTrXve60TZnsiOmZYNF66DXCyG9SFatvGEsjEm0nTG0vSgTiXKskXyMoAd+hHKyFSsTxWCMXFUxjFdnFWAo/uaVomxbuW78WtiGqQE2Z6Ydr3gw9Z363yIL9oK6dmcdivw0KuMq5UYgliA2qhYJX6NNiayCJ599ukZO1EUn6MoVLV+f6hMdqrlp0M1i3ybfkyQgztmJ1f3hwprGIs6O0UpvvVuusjlpYQyAT+UNGptBKxJBllxQLCKUYnJNn8SEKSsyu5mA/LuIAJqg4Pk7KGahnqQntBOFNsf3wiyIBkSHA4dBJn9OxV5M1nu7qtRAipAK2b3KeW/YRRW7Bd2Lwco7IIXyEoCIzHooES1HHZkGY5EqkF0E+SJzP2x65pHAcOAq5Dlqp3CH8fH074NYfa5NwKZyCU29q6btUgh4V7Yrmf+/Pw33tO9A8+RvxfDA52hfdnXWY40cN51PMaOT1yD7RWEh9SKNixnSIcuabjKEqnPz9yFGGGtyQVm9+LJN1qtEckFFNIizY/DNHKuetUUG1jhYRAloaKxBiEBMC0xrAGcAOzGGHZZdznlaPvvZzyKEgJ/92Z/FM57xDPzO7/wO7rzzTuzs7ODuu+8GAHjv8eIXvxjXXnstPvzhD+Ohhx7CK1/5SsQY8a53vevA5zoCLRvMh1g8mPxXQAIuAIaUCTeCgIg2E9MDXkdQVttZA5iUo4X2y4OkAb14QSKN0jbKFTUS6XJ+lMTcRH1MoJrAeeWS9pFtFHBJg4D2bRtd9LG4aAUIJgavuj8dlz7AXmZkGEQxUEvVeCcFzfy3USwVD3QppDG6jnK4aO2PiJ8rwKKPXegeUhK+FIWgwWQ0lsJURZRtMiXN53At6WHaUE6MOrwSQGwX4zDNdgswK2lb6BY5M2q7yILDGIA+AQa+BgYuVZh1TsZWTlyFFsbkHECTgEVPeBpo1G4RBpJNS64ixTpJZtNhndmSdP+NDQLG8vZDmXZdPaexTYnivIfhe2LUM6zFrmHMsvCzYOrPuV9cpfHhfbQWQoM/vg82H79494DpBUcNmqeex6lFSv2+TSxepFijtaAaSNU+MWaXj/RHBrCjRRMAKeJa2z6uJTOsEbut4tmi9PimfCclWi/pTIzJ4xoDkxjTojGNA/W5wlDe75bYlJWK/R1CRGPpWkKMcNbBBI/WOvSBFlzGGFhjJNThYA7GPzp2++234/bbb5f/v+VbvgWf+9zn8O53v1tAy7333ovPfOYzuP/++/HkJz8ZAPCOd7wDd9xxB+666y5sb28f6FxHoGWDxervEAEDhRqQGRNG4vybNjGIiCMfMyH1CA8akEOklyImpsZy6DJokBgiMzn5+A5GAYxqQol0rAxElPC00pxIeB/c6FjRloOrHihogg8ViuLtS7qbryMaI9dhQD8hRjgBRiVIonIJFrHbIl+0GuBroCagSutogCzk1R0UVR4cvuZ6YNUuI4k6UiDHWBqoo9LxaB1SmqwiFICwrsjhUiQC5FWgTdVt/Zq0PfKdckuqaK5CiMjXxitNa2F2ewkb1jZK18+fpyir2gWqV9pM8dMkzdeaMobaMvpC6764zkuxEmaQ0HQFYyT6KkmQpwGUoSSIwZfPgM3PeY6gq7Rh3CZur18rJgo5GaErny+jQ/8ZtDBgEaYvFziUZ6Ds3HLSP5MbZQq8TDBeRekBrkLNxixDahdlX7YCMuN6Bf/Z/wz3x78H/kufgrvxObJrc/3/hOF//G4+jWY5a9ebfo4nFit5QwYyMYP5WI6pfK1Gsa+yOJCFWl6YOWPQhwjn2lzaJMaxa8s6RLsQDaKzKFw+AAltfYhoAbTGwiLCGTqf4Sam/rWmOv4hmA/xvPO08DWfOnWq+Hw2m2E2mwhDPw979NFH8YQnPEH+/8hHPoJnPetZAlgA4LbbbsPe3h4+/vGP49Zbbz3Qcc+Cp/yjZSHS4MeAJSZGxSY07hPC52dI/w4x+x8ldFKOFWvyJetbEuDQA1wEHUvrX4LarrZoDJLGFzESMxSME3+t+I31oBxSzRegoF43+WzLyKDK/aUBQWUMWABFs7pc0JD0KrPMtPAE6fNEiOR60BSwuFNM1g9lga32tyvh8tS11eyRBil6Vc0TXypNX9DSfN9sQ3kjmlytWfQ4nJhKOqYR1oVCObuyYjZAnzezUZv0PYmuI21NO6eVazMrdCW17kO0J5aYkNhSSnXWOxT1mbTVqealT5t8LSlSKkeKtUmz0ya3mHr+2hltz4X0rBVQLX+zDkj1J5zLdXH6PZj1Lv0OA52Hj2dMCr+mZy10C8TZMuUPSpWDjc1uLP1I2CazQ1Osge9HNbNGTMiEmLhmXaa+38ieCDjXE7362+bttMalZshivwaGNcLnf7MALGzNU55ZAEzZT49PFXOEqR8gF3plN6dmlCeY22IMStvxwk7GVmNygF6IBSiWdqWq8cLYGXLpt9agdfTjjJFxVo6VdHGNIUaYx6sBFj1sWrBmAHUYFmNEDOf5k/r5hhtuwFVXXSU/b3vb2y5oW7/4xS/iXe96F1796lfLZw8++CCe9KQnFdudOHECXdfhwQcfPPCxj5iWDcYMSvE30SIAMkhhs9Wzq0EMf3cmkFx8L6uX8TYFC8SUafqbgZJBBlgRVIWgcS2MBgT14auVUowYMUVGTfyyD0rqWLukYtL1mDjNOsXIAxpNTME4GteUmA4t5VkgrUUEkFkPWgXl/DTROgypIxtxA+VBntvjQyRRXfCKHRBINcE2qNazaFqivYKUQcgT7RhUQPv9NTjkVTT78p0FzJL0OP0qZ2t1TdL/gESl+ti8b/oteWuMhWk8ZbCtmRUOwWaQotiRUocQyu8ZIOraWNqV47ieC5DjLxRrYyjnjZSyaJW+gc/ZKOEys1w8Kfk1uenSJGRDAHZP5cijhkCbpMl3kH42ZpXYRRCICQkkpZw7cr3KNSb3p7LCVcTs0wYgovt2BFYKMFIyiLSDYiM2aSl0HhvbwIBLYDh5Xpnpk/Dj2UIAaPjCf4V9xv88Oqx72nfA//dPbIxsqq/JhCrhXjMnIJwimIwf6PmOmakdvWv6eWN9VdqGFoxp2xBT6ZNIrnpr0Cg3oORzSZ+ZGBCsS4EPkDEAiCPWhQAJjS9BtiNXkjDrBjLWXGl2//33F+6YTSzLm9/8ZrzlLW/Z91i/9Vu/hec973ny/wMPPIDbb78dL33pS/FjP/ZjxbZmAuTFGCc/32RHoOUsjR9YLaStAYv+LMZYCHq1OWtGgtwYUUyQBxFOZf9uZobSNwVTFCKJyRz73msAolbxMelxNKOjt+dTsNtJ52/Qxisjx26xSKscFJdJExL3k+1XMiGEtMoNxpErKXhqV9MUqzCAAItXgwoNSjmxminumXZ1VVa4eio9TwxA9KVQsM7XwOyCBgE6hNso7YQAKqe+Nxnc2AZIdZLks9p3L6wHSCsAIPq11FWBzTVpuDaPXSyzXijVepIJx1gY40ugVl0fu0aiY7EtgUPNEI2yNI9+DGCqUhE1U8esVmJaTBgQumVudzqO4xV1+t8MK5ihzxFdfF9dBwwrAo2uA6eWNza5SZNQlAXEdRLHmPpSg87iOarvOyYmZW01IJbPjXKPVZ/LfbBljhP1Nz1jVRs4ZN/YxEApXVYYEL7wX+mwz/ifBaggBsk5FZXeCXzPUzv4GZAcSTEgzI4DbXq2+hWl7g+nRWwvmXK13kz/5vuv+tkaIyy3R3bLAzT2sStHL2qGEOHcTJY2Nauig/B53Fj7iMZaWB4G0nhgTHbrIxIDflgWQjxvIS3vv729fSANyWtf+1q87GUv23ebG2+8Uf5+4IEHcOutt+KWW27Be97znmK76667Dh/96EeLzx5++GH0fT9iYPazI9ByAKufE/5fgxW9TQ1iNDDRiNImR2l9vFgdK5ry+IHdPzDyEDKrwucLEbDOFPuQr9fARjX28SQJjGhsmbuTMG00+fCAB4B1OMG1aWHn5EWngSGj6RCjAg3KT83XyEBDifl8jAi2g2sMbKr/EdUq3sSAEJ1ohtgdN6TVmLOmYKUsIg26arLJN0ytuNXKdzK6KDEAxGzkAVaiG1oK76zdCMLeTK0yjRPgYixoorVJw5ImAT15xabLxS715MmFN5s5LLMJw5pydaQCmwW74D3QJsDVZCGrSRM5gDzJjCKQqgmHf+skfcyW8ETIoEpNSgIQBZDGEXCUDMepblScHUt5j4LKx9HL+Q0gwIWYJcXiCculrscjP9fSlykhmleAtRAxIyc4Y02OelbKdyczesU1SWg9U7OlBq0wY8aARtX/4ZxFcn99dQ6+Lm4vQGUoQkD4/G9CioQm9y25HYmZEX2RT24dBivOFkJ1NB3M3uMQjYnJbKFUb2Z3uKQEyAswY1CwqEYiOHP92slxUT0r4lo3EbPGUnP3mfeD+n7tIzqO5s+8ZgGUDtPiGaJOD3qMs7GTJ0/i5MmTB9r2y1/+Mm699VbcfPPNeO9730tjjrJbbrkFd911F77yla/g+uuvB0Di3NlshptvvvnAbToCLRuM2Yna9GebHtwpYa7enyfvrO9AwcV4xYrUll1NxFrw8bTot9bZWPIVketIjm1E/8LRyFPh2SFSpR6h8o1VyfSQB74YKJdCTJFUvEJhtX2EDD8+ySUtC4pjgOF6QDACfNiMdQie2k5K/4ZcO5HCfINrMQQLxETj6n1BgE4LlGXVxILKidUvsSd5Fb0x1BTIk6qafHnCGiJdaauzcup99eGU4FC0TQBpLmICLcEBIa9m5VhKnCoC6zZNzn5AmB2HaXrqD7+m6rkMVKxyj4mWKA8NUef04OgdLgYKkKun7iMFhrI+IWlkAspyGDxDMTAWfY8t+8lXNWyCJ8zRzBAXGUi7x78GE6g4pfGD5OcYlXLgY2utEgCToqu4yvrkdRkrtbwy8IsloAvZdVZgXd6uFs5OMSd8X6ZKH2ywmj2kCLf0twYycj2p71wLk5insHOKQqO7ZcrZwqH+rBGh3EnMzsVmLkwO1wcyezviohNwJAC/yoqr74sadyIMTMWUTo27mf2uxrD0O8S8gNlv4o4xSkSnHkqY3bmUxrqU8z3GxbAHHngAL3zhC/HUpz4Vd999N772ta/Jd9dddx0A4EUvehFuuukmvOIVr8Db3/52fP3rX8cb3vAG3HnnnQeOHAKOQMu+NsWeHPSe18BBH4dfGgYJGqAUAt8pvxN4O5WSOUZEAzQT2zMgYsYGKOlRfs15XclsjWWRG58iaUcK0yyNcdmjgpxBUrdD2i5oLq2cgNGgxX1h0v/cZ5TYCcQWpQmRt+frGkKUQUdfR97OpIgt7RbLYAYoV2ta/0Mgq0rTbyyirfQgsGlVSNENOfU8H3PMsnCiO25X4AE78iRr6BzOwndbsMNe1lGk/gvdkiaF9LmJgdiVBAQsQO4RQDL36msUXY6eSGwlNmaNBAM125T1WPi6+DNXioolRXo1ERtjqd2cU0azevW9SO6iIUHhtlFsTTNDUVvIZvZrVLxP3W9h0pLbqyj/oGvSKIagQCMKXERmyfj6dN/pew4CKeKWQ9aEFFiJ/3EJiNVWgx8o8GKsxvH5+A5EWTB4V+UszCxFuiU3Ui2slYSOzC65llyT/YqYrjAgdksEt6RMt+1ChPYs+hcxr2asCuaEGFOXFkk5yKAcXJwaXHwChMbkYAj5LmwGPfmcQOdMoWE5TBfQlWr33nsvvvCFL+ALX/gCnvKUpxTf8f1yzuF973sfXvOa1+AFL3gBFosFXv7yl0tI9EHtCLTsYxqoXAyAyi+RYXq2OpeIRScEePWLywLdqXZuajozNc5m15KI3BDhFJCxMDJJGyCzAYCwK5pZEgZow6omRgr79jHCGQvHTNBEmLj0UX3NE2GHvhj0CAxy8r/xQTM48GkVJiDHaNdTlO0LtwFfCzMJvH06KrW7wp5nEJzVjE4WC5bnGkJEK2JXgIs/DhFoTCohkSZ0A5TF4up0+uLKqcS6miHhtqeVdP7eALbN7AsU4NNuFBWdRp8pNxKTU7ClWJmvmfUsrGlSmh8f6Flqndp+doxYgGEt1x3aBR27z8JM2jhmtiDd29htjTVLrktMI7meapalqKAeVcg8A0MJhc73ss6fJH2tXHHjAn7pnjJw0QkDgwJAU6bBKNK40FjFuFm5FsMAL10/tSuWx0jHCfPjBFCaGWwzQ0htCVsnZFsGlyZESeTG7CwHD7gN74aMP8jjDJt+t1g/6EOQ8aJ2vZ8pMIIXOtb3qR839OUlsAupabnQdscdd+COO+4443ZPfepTcc8995zXuY5Aywbbh+Q4L9vkMqKkdQdrD0/e9cu3SWtzpmvhyT0igw2gHCCswk11IE1Q1KmPkP3P5D/VjJMWERfXOrEPp9Geuqxaic6rNa2j4XPKNjoiQNxhmcUvXAIVQ8KfT9p+LiXdZu2uqL4fgS2eSKeOMRWenNwYJumAkMJLucZKkXiLwUQ1ueWTxBEzM3ltwkKYDPQsZF/SI6lr1b+1xkUJa/etng5moXgiJL0LbEPVpcNA4k9jSSgcKlAw5TLSTJr63Ojrm7p2tb0kwOOHuC78WH+233HSdwWQ0e3Suhw+RsH8YfydumZTu52cG0UWMrgTgW4CM7FbwrsZEAFvW7jZcSAGWVRQFnEU7xhlsbUjZmVqcRGB4n3Xrvd6rNG/9fxcL3qMIbZ1esxMajljD+KNOzSbktSdyzGudLt8YOQB7H3vex+e//znY7FY4OTJk/hzf+7PFd9fiLoGtU25d87XppibelXAP1p8ZZRot25Tva0+rs4nIy+5OidrRTQNym3k/X1UP4FAVoyUkGnto2wfIuR8UwLmeqWTtx+fO8Tx5Kz7KqL80dfJ2w3VZ8IoKeo4ynf5bw3GYhIGB1AkAv+vc73oiB/OjcETK68gp1bAdc6VWlcUYiwG9iECfVRgRu9vLBqDyk2FLBBVCdpCtyBGoZ3JaEg5VLriGrSZFGFUfli6uCQvSwIIzEBEl3LUWFVbSh9Du5pU//Ex5ZlLnwUYDOlZoii83HfRtfBuBj/fRlxchTDfljbBdeOILjbOAWQdtE5pBCY182YbCut1qe6Vbai/XaqV1VKdH87nU+h1gorA4ful+0KzL+p5ks2riDTJn1IJsovnRINCfQ6didlYqonVzoo2RttQfpvUxjA7jrC8BivT0UQfeoQY0ZsG3s3o7xDTfSLQwGMM3886SzbVZYvqf1VzR40pDFj2E6c6a+T5kFusgA7/P1pEAhJ5VEeJTv0c2eHaFcO0/PIv/zLuvPNO/P2///fxvd/7vYgx4rd/+7fl+wtV14DtYrmE6nPUDIoxZl+m4mxeEr2/XoFoNoTbof92Jq9mtKtKtytrKM+9k/Q5tFunaPcGynhTKLnWDMkAlzIQRzDYoS9cNXhpq/NBlOdGliekFb64kNQKVo6dqHCh9idWvlozJAJpqFVmGvi5Tc4gT6gxkDsoCVl5Z8lHAoCT1uVJipKvmb6BXT8uExGdP7M2EqGlGBmtb9Er74Kt0CJanWHWTDA1FfApJ1qT7g9NcIH7aIL65xTviEGiw0iE2iL6nIdFwrKZhRrSMW0DuIayMQdPmXpjesr09bcziUYqwnZ9KBkvfueS+JT+Sc9BDDDIET4Sbh4GASimepYKhqXK+TNpGpjwsdS9KnLHNHMAK8lcHLsFMKSin0mDFLst+Pk2bDMv9ETcwmhswZTYFCAAJHYlsRsRSLq38r3S9zPL9cZj2Kb/a6td1HrMqxlZPWY40LszBDvJxFwquxTRQ5ejXRGgZRgG/MRP/ATe/va341WvepV8/q3f+q3y94Wqa7CfXYwHdwq41N/L+TeqU87eaheTbssUINBi4UA0zag/pkLAa/aoNv6MWQ+9gtL7b4rk2k83U/crT/g69Jppa709u5RYxMxHL6QpCbkwcMmLbwr1lpwz2qVCG4xdXsLEjFkWg5zAqrHlgD5aNUdOvgc5p9Q1cln/EotoJxVOzExAipoR3YS4ZEq9C4OTiNKFISHJatvR34XLzVZALvvmKPIku1iGwBosjKyIDFMFK4EMFKOxFPLM/WMsoktsrNJ0EDhZ5D4e1hkEMjAJXvQ2tGNmYLJg1WVgqdpkVHK8yG67AvQ5xFiWaCj6UEc81cClBitAydTU0UWciTk9m5LbJul4+Pq8m6H3ETb9BiJaFeI4wFJlB6P0enwOQFI8TA2j+n6ea5TOJtf7FDip/66PszaNlB3Z73wXe2FbnO8y1rQcpl0RoOUTn/gEvvzlL8Nai+c+97l48MEH8ZznPAd33303nvnMZwI497oGe3t72Nvbk//rmgx6krhY9zv7esfnvBDH1f+z7QcggPELrRmMun37Heug17HpmjV4mTrP1Ir7TMbRRfU11nocjkCSc6Xf7JOPMbMgERnYOUv5c2iCowKbsQI2uf104Mxc5XOU56T2MfjTkV1AmuicYj10wUsAEgHkcyZdLo8gDAxAk3HKXjplMvFVtZNEK6IZFj0JVyaTWTNL7erLDVIm0yGWz+KmzJlaLG6qjMbQWVqF/Un5R2KgmjWp1hUDgthYeEuTtQue6jdxSHnK4Gv6FWAc9UU6j+h+hGVJ/cTJ7/i6nQojDz7XBmNAxCBU93sB/kw+V2qz8esxGCw6nR+yqvNiAKKhPm/nkjk3AgiuFaEsT3i1G1mHBvNCYHx/6PeY0ayaUrOkG97pTePK1H5nwy7wOHemgKFvgLn/irUrArT8/u//PgBKKfzTP/3TuPHGG/GOd7wDf+pP/Sl8/vOfxxOe8IRzrmvwtre9bd80xYf1cNYumrNtyyZwst+xtKBtChTsN3BMfTal/zkbdkpHHu133P32nbJJHRA2nEOfO1Io+WTq6VAOroAK5eZBPgKCSGJmcOpB3aTPigSBE9cR2S/FzdTgBy4BmbSq166hqHiz5PLIESRNYhuaMbPi1PDAegencp3UK/yJMOVJpgNqda8jkwCZbDmqROcimuqPWnSto9yK/q3aGm2DPgKARee6MpFcAg7iAnQtCXkTGxJbyjoMPxQMUS2SLeozJTBI4LLNLrTAGWdVhBXfg6gS0nF5hoJRAQAu/dAAa5uBiwaswsZseJH4u+Ry9LZNeZhy/bSpcOFNCxNmKOnvUrdSL8y06+ZMWcbPxjYtcs7neJfaLuc8LYdp4yXQIdqb3/xm0XBs+vnYxz6GkAbMv/23/zZ+6Id+SDLuGWPwr//1v5bjnUtdgze+8Y149NFH5ef++++/8Bd6CKbFq2ezT/176jj155t+Nh3/fG0T+OHznjVgOSAI4/3Zl6x/pGjbxEAbq/37QIJEv6HffFqc+rTC81V/GpPzRuR9chtYKD0EEj0G46jCtSqMKMJW12XRKLt36orTWhCa3ARo5/STPmNBLDUwbasEo8X3yYr/U5sCTAGCaF8HvWCv399JRk7/HaufukioMQJgfIgI7Vz1DxWODClniTEUERO6ZS6Ayeaqa3S5SGZ0qTAkgw/XILSL5HppoEOVuYgmlVVQ4MW1BHAY5GwwiajqFlJUE6aKOqpddKkAZ2gXxPpYJ+1lsBYkNWRpLG6t7wu/GyHdOwLu4wKx/P4c1FVzIe1cxsjLZp4P518w8fK5mHO3S8q0HLSuwWOPPQYAuOmmm+Tz2WyGb/mWb8F9990H4NzrGpypJPeFctX8UbWzdd2c7XHPZZtNrq39gNF+29SD77nkomIupMi4POH9F/p8Qz0ra7LLCsoFwdmD6SB5MiqYApciRSbcO6M09MwIFTlZTKVZySAhoqyqzW4Hm1b3webkhFOahnpS04J17aKoo1Gor1TumoRkTBjg3AweBPa6GmBFYuM4o2swDqZdiEtGSjK085IBEQ0JiuslQFdfVAKI4nIDol9TMkCuBK61QjFkskgl5tNC6Nh02W3E+02FaPMxlPhayj7IIqZkV/RvZirroIERkCn69OAvxpne74OMy+czbh+N+ZevXVLQctC6BjfffDNmsxk+97nP4bu/+7sBAH3f40tf+hKe9rSnAbhwdQ3YzlaTcWTnZpv690y+76nvLgbAvFAh7mc6x35CY/67/q62OiReU8EGgHMt1ZACZAKV6KAk+uUCglqoS8eSg5KOQ8Sy2XVBJ8pZkk0RcWQkjDyqTqGIoHStgHKrbb5OtlpvZg2KbMh8vAjkopkqqZyF6l/Xwgx7lK8kUqFNyoRLehbLDBUAM+zRd64jpsI6WN+jqMtTgY1J0FBrfpIGJfJ3tWi53tdYAEP5NWtuQihdSfo8gAAWZmaY9fKRxJ71+FfnNZE+RxnxWEcdyrnPAFjqhUHtuubP620vhl2uY36IKkrxPI5xpdsVoWnZ3t7Gq1/9arzpTW/CDTfcgKc97Wl4+9vfDgB46UtfCuDC1TVgu1wf3G8EOx+W5GLsc6FYoPpYB23PfmzU2axOp4TFbMbQ6G+NgzV2lKCMNTDyeQqR5ogcg3WpiTAWG8ieLFCGzZqGOK44XufM4GuogVrdP5ph0SbuQi4Pkc4dkSt+F+JhY2BNLPUs6TtCUsyeRAIq1lHyNOvERTbAYt0HzJsWDsj5ehjAqD6WfgNKUJP6PerPaxOWq4oWsg2KMHIRGgMxDCK2ps9y9FBs5uQeMk60QKRjgUQP1gJonZlbg0WdIkGu9wwC+to2BTxs+vt87Vzf1UtpMV4ATcsRaDk8e/vb346mafCKV7wCu7u7eP7zn48PfvCDOHHiBIALV9fgyC6OXc6DwvkClws1sJ7JDaW3O5f2+gQmnCHWRbsBrHUwrhXGQDMmgBKZKiGtzkKr2RR9Ps6NoyclvWrXgmi9Yt/PplxFhVstplwbBrApgRnnD4nGJLcUFalwhmtT2aKInzBK2t2kmZGUm8VZgzb1oeEK5wYUkSQNVIBl6vPk3jFy3qzvyWUC2uJ/YXvUcWrdizE2ZwJmMXCMMMMqZ7W1DiwSdwnoARPFAeP+4b/A2WnFzrT/YYwXl/OYNGVHQlyyKwa0tG2Lu+++e18QciHqGhzZH0273N7leqIHpt0hB7W64KSvhDec6MuZBq4lLYymogdYWDeTRHlcrwkAmuR64ezDrpp8Nul8pnJqsDGAiWeYLDXIYSYgR6HxeUzxf0zXy7W1dG2pUSZZMGiguk50/Ow2Awj4hJizL88sbVdHTkluGNEHSYxNdj0BGWCYlMMFQGhmSRxLx2y6BqbfLWsT6Tw6KYeMuO+S+8cYwKbtdDgzkPMB7Wf7uW0vt3foyL4x7YoBLUd2ZH/UbcodAuwf+VR/fyZ6eIgos+4mY5amtZR3hqOXOIW+YQ1JpOzDm8LXL5YxeKH2EHjgfKx194iLiqPSmG0BsrsmAQsiYShfDOtlnDUiYNWTvgEwMwHm/9/e3QdHcdZxAP/upZf3kIQGuKSEyKAgNDSjQcuFqi3VWCRtOh1rq2MbpjPM1Jo6KO0IdhTGsQOjbdURsY4vtdXOxM4AlWkrJQqExpYiGFsEpsQSm6iJTIFASCAvd49/3O2yu7m923vdfe6+n5kbyN3e3fPcc3f7u+f5Pc8zFV6TJdyzoe4uDZiGiZSrGyRqm0ECV6dEm8qu39RUAPB6i6BMjBoCLe1+4X+D4d6f0DBZ+I6Kuq7M9G0vzLkpkd5bas6Q2lNWXlKE4Utjlm0TjZOBjmyTLIJBQEmywG7aSylRDFqIXCrenJhUUQONKd1wjioQTpzVhnoQPpmq50OLfBOzaCsZRxoiivR4VgnMV8t69ThFd522IKEInZUVtfBAKF8FoQRlIYAAPJicMpzZITxKKCjQrYWjAKF9nwK6nCB1OEcNgPRr1SiKMXkZgIKA7naPdr/w02q0lamhQAnP+IE56TlcfvMKqLESZGOtlaIGLGXFRdp150bGYvb6uTE4cGOZouEy/iEMWoiynJ3ZS9Hof4HrH0tRrk6djne2SLTbzQm4VqLNPIu2yag+oVQIEd73SX1u9Rjr55gMhvKCrlE82hBT+N6RE5QVD+CBYdq3IScIuLr5ZjAcNKnTxBHuJdGG7xTtuoAQCIZ7TfK8Xijhumgr2Jp62tS/zfk/+mPM16s8ClBRWowLo5e1gGX40ljE5FmidGLQQtJJZcIep7bby4+xSn5N1XLn8Uxxj8WQBxRheTR1iMcwUyl820QgiKAAvHkK8hQFeQoQmPYIoeOnhP79Exoj85hWxVWHf6DLKVGHa0JTq0OBS6izSoGibk4YHo5Th7LUcisIJRXrZ0YFRSjBUgnfUb+zuUfBtJlAenZWttZTh4LsJExTaukWsk7qMWTHoIWk4sQidYnQl7OitBjnRqzH/OM9caRDtOeLNhU7VeVMV32t8noizVTSry+i5sR4FAV5HuOCd2qwFtq4MdxTgvA0b4+i603J02YqhR4zNAzl0QVKarCiPo429Tg8/VgfdKj5QgLT17TR96JY9XrZzYGKdZt51hdlRjAoUpDTIn+7MWjJUTPLig1/RzupZlK8yXHmXhc79VKfI52vgb73wqoM6nHRuCFZMNJUbKfLFC/zCdu88nCkXc/VKdvm69VgRxtSQoTeKsWj9XjoF7JXp1irU7HNK/hq+yfpTAtcIgx3RdrgNB6x2tP8WSFyCoOWHGP15aNeH+vEncivNDvMy+nrH29m2dWeCjXYUGcrVJSGyj18aSxi3czXqfeLdqzVa6CWQ/+v/vh4v9jVskQannFrcOC28sQr2owqfTuo10Ua/lJ7avQ9Her91UXs1CGgQFAgoH8+D5AHYw+NuddEnX4ebd80QzuYAq5YQ23xtKH+Pe2WHza5iuu0hDBoyRH6E2y0k6s+QEiFaPkn5mmVagBiVS4987HR7hvvcbFeH/Mxib5mVmVJdPoo2Wf13R1rCEVllc8TgAIRnD5Eo/0dvDrVOtIwzrTPCOwNw6X6x4Rbe2JzGYOWEAYtWc58QrXTGxDtJBxpqCBRdgMNGbD7PDsZElptvPfNS+BbDe/pc1CiTRO3CvQzKVY+VhacB0kiDFqylLknIJn7R6MfLknH4+ciNZjjr1v3sOo5sbNf1LR9dUxrodhdOyPW1g6pFK1HNtXJ8GQPN0wMYdCSRZwIBNTntPOLi4FKfJhP4Cw7gYCd6eJ2nsONgYAauJh/lCRbZ0oMh4dCIuyXTm4UK8/CDQGBG6buZquZZcXwKMZ/KX3ied+qU6VjTRuPdlGPsfM86aJ/T5nfY+bbMlEeMlJ3eU7qwp4WShfzOh/A9GTaWEm1mWAnaTSbclecpL6O5veDir0xzrM6ibu1Z8KcBK/OzIv0mVW/cxiokJMYtCQhWsZ+PF9S5i+BWIFIpBksTqkoLY4YuLihbLnG7rR1yjy3negTDaJSPbuQ7BNBkfTicNkwPMSgJYZIH271RG0+YcfqUYh0cpe5F8Kql4UBi7OYC0PRxApY9N9vNJ15TalM4YaJIQxaLKhjzVYfXHNXvR3Z9iWgX9hNxYDFXazag8FM7lJ7gvU/uuIJUrK9tyXaD1WrvylzmIhroaK0OOuCjHSIp6eJ3IPBZW4LilDgmsiPr2ymfi703//618bJ80LSSbgpmH3kBuxpoYTxl4bcmAPjDuake/3nKt2zhaJ9hq16X4YvjWXdonJqG5jrbPV/9W+PbkfvdAumYLpWNmyYyJ4WSpj+lwh/qcmJAYuzPAqm7Tidqc+T2vYVpcW4MHrZ9v2y5bNunnIOwHKvJ3IP9rRQUrLlC4wo0/Q9HWqCpLnnI1qip75XJt6d0c35LIqiYGTssuFxon22K0rlzGuxej1l+B4TwQBEMJD0Y8iOQQtRjpLxpJNu+uT7ZF6fWDstq49vXsY/3pOn/vhYu5PHUlZcZOs5hy/Jt1aLzMGKikFLCIMWohzCQCU2tQdCzfmJltsR6eQdzzTYVJ40zcnV+nJHSrxO9LnVXhrZAhcz/exHmYKXXMeghShHMGC5yk5goR+qUf9vlfNgHnIBjH9bJa6mc/Zduk7EserkNDtTloGr9ZAlYBHBYAp6WoIpKo1zGLQQZblcnOUV6YQabZp3qn5tR1uYTb9nTzrLkC4yvI+sglFz2d38OlsRgQBEIMmgJcn7uwGDFqIslsiJRv/F78Zf0mZWJ6p41qJJ5Uks2jTZbBMrEMs02fZ+iocQKchpEQxaiMjlkjmhuO2kpDKfhLI9OHCSDD0sdvA9kh0YtBBlMTvBhky/QtXckQujl1FeUqT9S7HZyZ9JNEBxS35LNq/0zNlDIQxaiHKY3YDF6ZOSvpzquiKUuEjru8h8wpe57HYxaAlh0EKUxdQFzJKdmuuEWOWLZxVXMk7xtVo3xi4769BkQi4EK2TEoIUoB6g9JbH2m4n1GFYSPWnFk5uiLzeHhOw5NzI27cRufo0TmQpvd9gxHcFMrgYq7GkJkWbvoVOnTqG1tRVVVVWYMWMGVqxYgf379xuO6e/vx+23346SkhJUVVXha1/7GiYmJhwqMZE7qHvZeJT0JVXq93GJ5xLJ8KUx7RKpHkyotE9dDTfaJV3MAYtHCZVHf4nnvaLeJ1ep67Qkd+E6LRmzevVqLFy4EPv27UNRURF+9KMfoaWlBe+++y58Ph8CgQBWr16NWbNmobu7G2fPnkVbWxuEEPjJT37idPGJHCfLyV6WcsrCzSd6tjXFS4qg5f3338c///lP/PrXv8YNN9wAANi6dSu2b9+O48ePw+fzYe/evThx4gQGBgZQU1MDAHjyySexZs0aPP7445gxY4aTVSAiIkpYMBgAkhzeCXJ4KDOuvfZaLF68GM899xxGR0cxNTWFn//855gzZw4aGxsBAG+88Qbq6+u1gAUAPvvZz2J8fBxHjx61fOzx8XFcvHjRcCEiInKT5IeGks+JieaOO+7AvHnzUFhYiOrqatx3333473//azgmFSkcUgQtiqKgs7MTPT09KCsrQ2FhIX74wx9iz549qKioAAAMDQ1hzpw5hvtVVlYiPz8fQ0NDlo+9ZcsWlJeXa5fa2tp0VoWIiCjr3HLLLXjhhRfwzjvvYMeOHXj33Xfx+c9/XrtdTeEYHR1Fd3c3Ojo6sGPHDqxfvz6u53E0aNm8eTMURYl6OXLkCIQQeOihhzB79my89tprOHz4MFpbW9HS0oLBwUHt8SKt3SCEiLqmw8aNG3HhwgXtMjAwkJa6EhERJcrtPS1f//rXsXz5ctTV1aGpqQkbNmzAoUOHMDk5CQBaCsfvfvc7fOQjH8GnP/1pPPnkk/jFL34R1wiHozkt7e3tuPfee6Me84EPfAD79u3DSy+9hPPnz2u5Kdu3b0dnZyeeffZZbNiwAT6fD2+++abhvufPn8fk5OS0Hhi9goICFBQUJF8ZIiKidAkEIDxJBh3hDRPNQUKqz4Pnzp3D888/j6amJni9XgCxUzhuueUWW4/taNBSVVWFqqqqmMeNjYW3QvcYO4Y8Hg+C4Slcfr8fjz/+OAYHB1FdXQ0gFNkVFBRoeS9EREQyEiL5RFx1w0RzGsSmTZuwefPmpB4bAL75zW9i27ZtGBsbw/Lly/HSSy9ptyWawmEmRU6L3+9HZWUl2tra8NZbb+HUqVN49NFH0dfXh9WrVwMAmpubsWTJEtx3333o6enBn//8ZzzyyCNYu3YtZw4RERGFDQwMGNIiNm7cGPE4uykcqkcffRQ9PT3Yu3cv8vLycP/990OIqwv2JJLCYSbFlOeqqirs2bMHjz32GFauXInJyUlcf/31+MMf/oCGhgYAQF5eHl5++WU89NBDWLFiBYqKivClL30JTzzxhMOlJyIiSo4IBpPvaQmPTMyYMcPWj3m7KRwqdfRk4cKFWLx4MWpra3Ho0CH4/f6EUzjMpAhaAGDZsmV49dVXox4zb948Q3cUERFRNhApWKcl3kRcuykcEZ8r3MMyPj4OIHUpHNIELUREROQ+hw8fxuHDh3HTTTehsrISp0+fxne+8x0sWLAAfr8fgDGF4wc/+AHOnTuXUAqHFDktREREuSy091Dyl3QoKirCzp07ceutt2LRokV44IEHUF9fj66uLm1WkprCUVhYiBUrVuALX/gC7rzzzrhTONjTQkRE5HJODA/ZtXTpUuzbty/mcalI4WBPCxEREUmBPS1EREQu5+aelkxi0EJERORywWAACoMWDg8RERGRHNjTQkRE5HIiEASUJHtaAumZPZRJDFqIiIhcLpV7D8mMQQsREZHLiWAg+Z4W5rQQERERZQZ7WoiIiFyOPS0hDFqIiIhcjkFLCIMWE3VnyosXLzpcEiIicjP1PKGeN9IqMImknyUwmYqSOIpBi8nZs2cBALW1tQ6XhIiIZDAyMoLy8vK0PHZ+fj58Ph+GTryQksfz+XzIz89PyWM5QREZCRHlMTw8jMrKSvT396ftTeiUixcvora2FgMDA3FtBS4D1k1OrJucWLcQIQRGRkZQU1MDjyd981quXLmCiYmJlDxWfn4+CgsLU/JYTmBPi4n6xisvL8+6D6NqxowZrJuEWDc5sW5yslu3TPy4LSwslDrQSCVOeSYiIiIpMGghIiIiKTBoMSkoKMCmTZtQUFDgdFFSjnWTE+smJ9ZNTtlct2zARFwiIiKSAntaiIiISAoMWoiIiEgKDFqIiIhICgxaiIiISAoMWnS2b9+O+fPno7CwEI2NjXjttdecLlLcNm/eDEVRDBefz6fdLoTA5s2bUVNTg6KiItx88804fvy4gyW2dvDgQdx+++2oqamBoih48cUXDbfbqcv4+DgefvhhVFVVoaSkBHfccQf+/e9/Z7AWkcWq25o1a6a14/Llyw3HuLVuW7Zswcc+9jGUlZVh9uzZuPPOO/HOO+8YjpG17ezUTda2+9nPfoYbbrhBW1TN7/fjj3/8o3a7rG0GxK6brG2Wixi0hP3+97/HunXr8Nhjj6Gnpwef+MQnsGrVKvT39ztdtLhdf/31GBwc1C7Hjh3Tbvv+97+Pp556Ctu2bcNf//pX+Hw+fOYzn8HIyIiDJY5sdHQUDQ0N2LZtW8Tb7dRl3bp12LVrFzo6OtDd3Y1Lly6hpaUFgYCzu53GqhsA3HbbbYZ2fOWVVwy3u7VuXV1d+OpXv4pDhw6hs7MTU1NTaG5uxujoqHaMrG1np26AnG03d+5cbN26FUeOHMGRI0ewcuVKtLa2aoGJrG0GxK4bIGeb5SRBQgghPv7xj4sHH3zQcN2HP/xhsWHDBodKlJhNmzaJhoaGiLcFg0Hh8/nE1q1bteuuXLkiysvLxdNPP52hEiYGgNi1a5f2t526DA8PC6/XKzo6OrRj/vOf/wiPxyP27NmTsbLHYq6bEEK0tbWJ1tZWy/vIUjchhDhz5owAILq6uoQQ2dV25roJkV1tV1lZKX75y19mVZup1LoJkV1tlu3Y0wJgYmICR48eRXNzs+H65uZmvP766w6VKnG9vb2oqanB/Pnzce+99+L06dMAgL6+PgwNDRnqWVBQgE996lPS1dNOXY4ePYrJyUnDMTU1Naivr5eivgcOHMDs2bOxcOFCrF27FmfOnNFuk6luFy5cAADMnDkTQHa1nbluKtnbLhAIoKOjA6Ojo/D7/VnVZua6qWRvs1zBDRMBvP/++wgEApgzZ47h+jlz5mBoaMihUiXmxhtvxHPPPYeFCxfif//7H773ve+hqakJx48f1+oSqZ7vvfeeE8VNmJ26DA0NIT8/H5WVldOOcXu7rlq1CnfffTfq6urQ19eHb3/721i5ciWOHj2KgoICaeomhMA3vvEN3HTTTaivrweQPW0XqW6A3G137Ngx+P1+XLlyBaWlpdi1axeWLFminZhlbjOrugFyt1muYdCioyiK4W8hxLTr3G7VqlXa/5cuXQq/348FCxbg2Wef1RLLsqGeqkTqIkN977nnHu3/9fX1WLZsGerq6vDyyy/jrrvusryf2+rW3t6Ot99+G93d3dNuk73trOomc9stWrQIf//73zE8PIwdO3agra0NXV1d2u0yt5lV3ZYsWSJ1m+UaDg8BqKqqQl5e3rSI+cyZM9N+WcimpKQES5cuRW9vrzaLKBvqaacuPp8PExMTOH/+vOUxsqiurkZdXR16e3sByFG3hx9+GLt378b+/fsxd+5c7fpsaDurukUiU9vl5+fjgx/8IJYtW4YtW7agoaEBP/7xj7OizazqFolMbZZrGLQg9GZubGxEZ2en4frOzk40NTU5VKrUGB8fx8mTJ1FdXY358+fD5/MZ6jkxMYGuri7p6mmnLo2NjfB6vYZjBgcH8Y9//EO6+p49exYDAwOorq4G4O66CSHQ3t6OnTt3Yt++fZg/f77hdpnbLlbdIpGp7cyEEBgfH5e6zayodYtE5jbLehlP/XWpjo4O4fV6xa9+9Stx4sQJsW7dOlFSUiL+9a9/OV20uKxfv14cOHBAnD59Whw6dEi0tLSIsrIyrR5bt24V5eXlYufOneLYsWPii1/8oqiurhYXL150uOTTjYyMiJ6eHtHT0yMAiKeeekr09PSI9957Twhhry4PPvigmDt3rvjTn/4k/va3v4mVK1eKhoYGMTU15VS1hBDR6zYyMiLWr18vXn/9ddHX1yf2798v/H6/uO6666So21e+8hVRXl4uDhw4IAYHB7XL2NiYdoysbRerbjK33caNG8XBgwdFX1+fePvtt8W3vvUt4fF4xN69e4UQ8raZENHrJnOb5SIGLTo//elPRV1dncjPzxcf/ehHDdMYZXHPPfeI6upq4fV6RU1NjbjrrrvE8ePHtduDwaDYtGmT8Pl8oqCgQHzyk58Ux44dc7DE1vbv3y8ATLu0tbUJIezV5fLly6K9vV3MnDlTFBUViZaWFtHf3+9AbYyi1W1sbEw0NzeLWbNmCa/XK+bNmyfa2tqmldutdYtULwDimWee0Y6Rte1i1U3mtnvggQe0779Zs2aJW2+9VQtYhJC3zYSIXjeZ2ywXKUIIkbl+HSIiIqLEMKeFiIiIpMCghYiIiKTAoIWIiIikwKCFiIiIpMCghYiIiKTAoIWIiIikwKCFiIiIpMCghYhw8803Y926dU4Xg4goKgYtREREJAUGLURERCQFBi1EZHD+/Hncf//9qKysRHFxMVatWoXe3l7t9t/85jeoqKjAq6++isWLF6O0tBS33XYbBgcHHSw1EeUCBi1EZLBmzRocOXIEu3fvxhtvvAEhBD73uc9hcnJSO2ZsbAxPPPEEfvvb3+LgwYPo7+/HI4884mCpiSgXXON0AYjIPXp7e7F792785S9/QVNTEwDg+eefR21tLV588UXcfffdAIDJyUk8/fTTWLBgAQCgvb0d3/3udx0rNxHlBva0EJHm5MmTuOaaa3DjjTdq11177bVYtGgRTp48qV1XXFysBSwAUF1djTNnzmS0rESUexi0EJFGCGF5vaIo2t9er9dwu6IolvclIkoVBi1EpFmyZAmmpqbw5ptvatedPXsWp06dwuLFix0sGRERgxYi0vnQhz6E1tZWrF27Ft3d3Xjrrbfw5S9/Gddddx1aW1udLh4R5TgGLURk8Mwzz6CxsREtLS3w+/0QQuCVV16ZNiRERJRpiuBANBEREUmAPS1EREQkBQYtREREJAUGLURERCQFBi1EREQkBQYtREREJAUGLURERCQFBi1EREQkBQYtREREJAUGLURERCQFBi1EREQkBQYtREREJAUGLURERCSF/wOvGChsBHPLIAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "masked.isel(time=0).plot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "interpreter": { "hash": "6092879fba406c8c6ca22f91e04d2ebf6b536b44c8b2e1d9154b002fdf6ee7b3" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 4 }