{ "cells": [ { "cell_type": "markdown", "id": "90d173f1", "metadata": {}, "source": [ "# Time Series Statistics" ] }, { "cell_type": "markdown", "id": "93515dae", "metadata": {}, "source": [ ":::{admonition} Content\n", ":class: note, dropdown\n", "\n", "1. Load in your data\n", "2. Plotting a time series\n", "3. Cumulative Sum\n", "4. Kendall's Tau\n", "5. Theil Sen Estimator\n", "\n", ":::" ] }, { "cell_type": "markdown", "id": "2e959c42", "metadata": {}, "source": [ "## 1) Load in your data with `pandas`" ] }, { "cell_type": "code", "execution_count": 1, "id": "2ac4b430", "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "id": "b2d5df79", "metadata": {}, "outputs": [], "source": [ "gauge_data = pd.read_csv('englewood_3_21_21_usgs_modified.csv')" ] }, { "cell_type": "code", "execution_count": null, "id": "62788a44", "metadata": {}, "outputs": [], "source": [ "# If your file doesn't read in that easily you might also try using additional flags such as\n", "pd.read_csv('englewood_3_21_21_usgs_modified.csv', header=1) # specify header row\n", "pd.read_csv('englewood_3_21_21_usgs_modified.csv', skiprows=10) # ignore some rows at the top of the file\n" ] }, { "cell_type": "markdown", "id": "d698e1d6", "metadata": {}, "source": [ "We see we have a pandas DataFrame with rows corresponding to 146 times and several data columns, the interesting ones being Discharge, Temperature, Dissolved oxygen and pH." ] }, { "cell_type": "code", "execution_count": 4, "id": "68c859a1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | agency_cd | \n", "site_no | \n", "datetime | \n", "tz_cd | \n", "Discharge | \n", "Temperature | \n", "Dissolved oxygen | \n", "pH | \n", "
---|---|---|---|---|---|---|---|---|
0 | \n", "USGS | \n", "6711565 | \n", "2021-03-12 00:00 | \n", "MST | \n", "44.5 | \n", "8.1 | \n", "8.3 | \n", "8.1 | \n", "
1 | \n", "USGS | \n", "6711565 | \n", "2021-03-12 00:15 | \n", "MST | \n", "44.5 | \n", "8.1 | \n", "8.2 | \n", "8.1 | \n", "
2 | \n", "USGS | \n", "6711565 | \n", "2021-03-12 00:30 | \n", "MST | \n", "44.5 | \n", "8.1 | \n", "8.2 | \n", "8.1 | \n", "
3 | \n", "USGS | \n", "6711565 | \n", "2021-03-12 00:45 | \n", "MST | \n", "44.5 | \n", "8.1 | \n", "8.1 | \n", "8.1 | \n", "
4 | \n", "USGS | \n", "6711565 | \n", "2021-03-12 01:00 | \n", "MST | \n", "44.5 | \n", "8.1 | \n", "8.1 | \n", "8.1 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
141 | \n", "USGS | \n", "6711565 | \n", "2021-03-13 11:15 | \n", "MST | \n", "42.6 | \n", "6.7 | \n", "9.8 | \n", "7.9 | \n", "
142 | \n", "USGS | \n", "6711565 | \n", "2021-03-13 11:30 | \n", "MST | \n", "42.6 | \n", "6.7 | \n", "9.9 | \n", "7.9 | \n", "
143 | \n", "USGS | \n", "6711565 | \n", "2021-03-13 11:45 | \n", "MST | \n", "42.6 | \n", "6.7 | \n", "10.2 | \n", "7.9 | \n", "
144 | \n", "USGS | \n", "6711565 | \n", "2021-03-13 12:00 | \n", "MST | \n", "46.5 | \n", "6.7 | \n", "10.3 | \n", "7.9 | \n", "
145 | \n", "USGS | \n", "6711565 | \n", "2021-03-13 12:15 | \n", "MST | \n", "NaN | \n", "6.6 | \n", "10.3 | \n", "7.9 | \n", "
146 rows × 8 columns
\n", "